

DAS-C01: AWS Certified Data Analytics - Specialty

Study Guide with Practice Questions & Labs

First Edition

www.ipspecialist.net

Document Control

http://www.ipspecialist.net

Proposal Name : AWS Certified Data Analytics
Specialty

Document Edition : First Edition

Document Release Date : 9th February 2022

Reference : DAS-C01

Copyright © 2022 IPSpecialist LTD.

Registered in England and Wales

Company Registration No: 10883539

Registration Office at: Office 32, 19-21 Crawford Street, London W1H 1PJ,

United Kingdom
www.ipspecialist.net

All rights reserved. No part of this book may be reproduced or transmitted in

any form or by any means, electronic or mechanical, including photocopying,

recording, or by any information storage and retrieval system, without the

written permission from IPSpecialist LTD, except for the inclusion of brief

quotations in a review.

Feedback:

If you have any comments regarding the quality of this book, or otherwise

http://www.ipspecialist.net

alter it to better suit your needs, you can contact us through email at
info@ipspecialist.net
Please make sure to include the book’s title and ISBN in your message.

mailto:info@ipspecialist.net

About IPSpecialist

IPSPECIALIST LTD. IS COMMITTED TO EXCELLENCE AND
DEDICATED TO YOUR SUCCESS.

Our philosophy is to treat our customers like family. We want you to
succeed, and we are willing to do everything possible to help you make
it happen. We have the proof to back up our claims. We strive to
accelerate billions of careers with great courses, accessibility, and
affordability. We believe that continuous learning and knowledge
evolution are the most important things to keep re-skilling and up-
skilling the world.
Planning and creating a specific goal is where IPSpecialist helps. We
can create a career track that suits your visions as well as develop the
competencies you need to become a professional Network Engineer.
Based on the career track you choose, we can also assist you with the
execution and evaluation of your proficiency level, as they are
customized to fit your specific goals.
We help you STAND OUT from the crowd through our detailed IP
training content packages.

Course Features:

Self-Paced Learning
Learn at your own pace and in your own time

Covers Complete Exam Blueprint
Prep-up for the exam with confidence

Case Study Based Learning
Relate the content with real-life scenarios

Subscriptions that Suits You

https://ipspecialist.net/

Get more and pay less with IPS subscriptions
Career Advisory Services

Let the industry experts plan your career journey
Virtual Labs to test your skills

With IPS vRacks, you can evaluate your exam preparations
Practice Questions

Practice questions to measure your preparation standards
On Request Digital Certification

On request digital certification from IPSpecialist LTD.

About the Authors:

This book has been compiled with the help of multiple professional
engineers. These engineers specialize in different fields e.g. Networking,
Security, Cloud, Big Data, IoT, etc. Each engineer develops content in
its specialized field that is compiled to form a comprehensive
certification guide.

About the Technical Reviewers:

Nouman Ahmed Khan

AWS-Architect, CCDE, CCIEX5 (RandS, SP, Security, DC, Wireless),
CISSP, CISA, CISM is a Solution Architect working with a major
telecommunication provider in Qatar. He works with enterprises,
mega-projects, and service providers to help them select the best-fit
technology solutions. He also works closely as a consultant to
understand customer business processes and helps select an
appropriate technology strategy to support business goals. He has more

than 14 years of experience working in Pakistan/Middle-East and UK.
He holds a Bachelor of Engineering Degree from NED University,
Pakistan, and M.Sc. in Computer Networks from the UK.

Abubakar Saeed

Abubakar Saeed has more than twenty-five years of experience,
Managing, Consulting, Designing, and implementing large-scale
technology projects, extensive experience heading ISP operations,
solutions integration, heading Product Development, Presales, and
Solution Design. Emphasizing adhering to Project timelines and
delivering as per customer expectations, he always leads the project in
the right direction with his innovative ideas and excellent management.

Dr. Fahad Abdali

Dr. Fahad Abdali is a seasoned leader with extensive experience
managing and growing software development teams in high-growth
start-ups. He is a business entrepreneur with more than 18 years of
experience in management and marketing. He holds a Bachelor's
Degree from NED University of Engineering and Technology and a
Doctor of Philosophy (Ph.D.) from the University of Karachi.

Mehwish Jawed

Mehwish Jawed is working as a Senior Research Analyst. She holds a
Master's and Bachelors of Engineering degree in Telecommunication
Engineering from NED University of Engineering and Technology. She

also worked under the supervision of HEC Approved supervisor. She
has more than three published papers, including both conference and
journal papers. She has a great knowledge of TWDM Passive Optical
Network (PON). She also worked as a Project Engineer, Robotic Trainer
in a private institute and has research skills in the field of
communication networks. She has both technical knowledge and
industry-sounding information, which she utilizes effectively when
needed. She also has expertise in cloud platforms, such as AWS, GCP,
Oracle, and Microsoft Azure.

Rafia Muzaffar

Rafia Muzaffar is working as a Technical Content Developer. She holds
a Bachelor’s of Engineering degree in Telecommunication Engineering
from NED University of Engineering and Technology. She possesses
exceptional research and writing skills. She is enthusiastic and
passionate in her academic pursuit. She has a sound knowledge of
Networking, IoT, and Cloud and also knows multiple programming
languages, including MATLAB, HTML, CSS, React. Js, C# and Java.

Mohammad Usman Khan

Muhammad Usman Khan is a Technical Content Developer. He holds
a Bachelor’s Degree in Telecommunication Engineering from Sir Syed
University of Engineering and Technology. He holds the First Position
in Telecommunication Engineering and received two Gold Medals, the
first from Sir Syed University of Engineering and Technology. He
worked on many Deep Learning projects. He is certified by the

National Center of Artificial Intelligence (NCAI), a research institute of
the Government of Pakistan in Artificial Intelligence. He is also
certified by the Nvidia Deep Learning Institute in Deep Learning with
Computer Vision.

Syeda Fariha Ashrafi
Syeda Fariha Ashrafi is working as a technical content developer. She
has completed bachelor’s degree in telecommunication engineering
from NED University of Engineering and Technology. She has also
completed the CCNA (Routing and Switching) course. During her
bachelor’s program, she has worked on the project “Smart metering
using PLC (Power Line Communication).

Free Resources

For Free Resources: Please visit our website and register to access your
desired Resources Or contact us at: helpdesk@ipspecialist.net

Career Report: This report is a step-by-step guide for a novice who
wants to develop his/her career in the field of computer networks. It
answers the following queries:

mailto:helpdesk@ipspecialist.net

What are the current scenarios and future prospects?
Is this industry moving towards saturation, or are new
opportunities knocking at the door?
What will the monetary benefits be?
Why get certified?
How to plan, and when will I complete the certifications if I start
today?
Is there any career track that I can follow to accomplish the
specialization level?

Furthermore, this guide provides a comprehensive career path towards
being a specialist in networking and highlights the tracks needed to
obtain certification.

IPS Personalized Technical Support for Customers: Good customer
service means helping customers efficiently, in a friendly manner. It is
essential to be able to handle issues for customers and do your best to
ensure they are satisfied. Providing good service is one of the most
important things that can set our business apart from the others of its
kind.

Excellent customer service will result in attracting more customers and
attain maximum customer retention.

IPS offers personalized TECH support to its customers to provide better
value for money. If you have any queries related to technology and labs,
you can simply ask our technical team for assistance via Live Chat or
Email.

Our Products

Study Guides
IPSpecialist Study Guides are the ideal guides to developing the hands-
on skills necessary to pass the exam. Our study guides cover the official
exam blueprint and explain the technology with real-life case study-
based labs. The content covered in each study guide consists of
individually focused technology topics presented in an easy-to-follow,
goal-oriented, step-by-step approach. Every scenario features detailed
breakdowns and thorough verifications to help you completely
understand the task and associated technology.

We extensively used mind maps in our study guides to visually explain
the technology. Our study guides have become a widely used tool to
learn and remember information effectively.

vRacks
Our highly scalable and innovative virtualized lab platforms let you
practice the IPSpecialist Study guide at your own time and your own
place as per your convenience.

Exam Cram
Our Exam cram notes are a concise bundling of condensed notes of the
complete exam blueprint. It is an ideal and handy document to help
you remember the most important technology concepts related to the
certification exam.

Practice Questions
IP Specialists' Practice Questions are dedicatedly designed from a
certification exam perspective. The collection of these questions from
our Study Guides is prepared to keep the exam blueprint in mind,
covering not only important but necessary topics as well. It is an ideal
document to practice and revise your certification.

Content at a glance

Chapter 01: Introduction
Chapter 02: Amazon Simple Storage Service
Chapter 03: Databases in AWS
Chapter 04: Collecting Streaming Data
Chapter 05: Data Collection and Getting Data into AWS
Chapter 06: Amazon Elastic Map Reduce
Chapter 07: Using Redshift
Chapter 08: Redshift Maintenance and Operations
Chapter 09: AWS Glue, Athena, and QuickSight
Chapter 10: ElasticSearch
Chapter 11: AWS Security Services
Answers
Acronyms
References
About Our Products

Table of Contents

Chapter 01: Introduction
Course Introduction

Recommended AWS Knowledge

What is Data Analytics?

Steps for Success

Digital Use Cases

Chapter 02: Amazon Simple Storage Service
Introduction to S3

Getting Data Into S3 - Concepts, AWS Management Console, AWS
CLI

Upload Interfaces

Transfer Acceleration

Demo 2-01: AWS Management Console

Demo 2-02: AWS CLI

Getting Data Into S3 - Boto3

Demo: Python Boto3 SDK

S3 Multipart Upload

What do we do when we have a lot of data?

Three Multipart Upload API Calls

Considerations

Best Practices and Limitations

Demo 2-03: Exploring Multipart Upload Script

Demo 2-04: Uploading a File with Multipart Upload Script

S3 Storage Classes

What are Storage Classes?

Availability and Durability

S3 Standard

S3 Infrequent Access

S3 Standard-IA

S3 Intelligent Tiering

S3 Glacier

S3 Glacier Deep Archive

S3 Lifecycle Policies

Life Of Data

Data Lifecycle in S3

How To Make It Happen

Demo 2-05: Applying S3 Lifecycle Policy

S3 Security and Encryption

S3 Security Overview

In-Flight Security

At Rest Security

Client-Side Encryption

Server-Side Encryption

The S3 Access Security Waterfall

Access Logging, Alerting, and Auditing

Object Protection and Replication

Lab 2-01: Programmatically Utilizing Data from S3

Introduction

Problem

Solution

Mind Map

Practice Questions

Chapter 03: Databases in AWS
Introduction

Organizing Data

Services

Relational Database
Non-Relational Database

Relational Database Service

Introduction

Managed Service

Second Level Service

RDS Instance

Operation System Access

Disaster Recovery

Neptune

Introduction

Graph Structure

Interface Languages

Comparison to Relation Database Service

Neptune Use Cases

DocumenDB

Introduction

DocumentDB Features

DocumentDB Use Cases

Serverless Options

Introduction

S3 Select

Athena

DynamoDB

Aurora

Aurora Serverless

Lab 3-01: Programmatically Utilizing S3 Select

Introduction

Problem

Solution

Mind Map
Practice Questions

Chapter 04: Collecting Streaming Data
Introduction to Collecting Streaming Data

Kinesis Family

Data Collection

Data Collection Methods

Big Data Collection

Streaming Data

AWS Kinesis Family

Kinesis Data Streams

Introduction

Working with Kinesis Data Streams

Benefits of Using Kinesis Data Streams

Shard

Processing & Storage

Interacting with Kinesis Data Stream

KPL vs. Kinesis API

Kinesis Data Stream Use Cases

Lab 4-01: AWS Kinesis Data Stream

Kinesis Data Firehose

Introduction

AWS Kinesis Firehose Key Concepts

Kinesis Firehose Data Flow

S3 Destination

Redshift Destination

Elasticsearch Destination

Splunk Destination

Buffer Size & Buffer Interval

Kinesis Firehose Use Cases

Demo: Kinesis Data Firehose

Kinesis Video Streams

Introduction

Producer & Consumer Applications

Real-time vs. Batch-oriented

Kinesis Video Stream Benefits

Kinesis Video Streams Working

AWS Kinesis Video Stream Use Cases

Kinesis Data Analytics

Introduction

AWS Kinesis Data Analytics Benefits

Kinesis Data Analytics Working

AWS Kinesis Data Analytics Use Cases

Demo: Kinesis Data Analytics

Amazon Managed Streaming for Kafka

Apache Kafka

Apache Kafka Publish/Subscribe Conceptually

Apache Kafka Management

Amazon MSK

MSK Architecture

Compare MSK & Kinesis Data Stream

Streaming Services Uses Cases

Lab 4-02: Joining, Enriching, & Transforming Streaming Data with
Amazon Kinesis

Introduction

Problem

Solution

Mind Map

Practice Questions

Chapter 05: Data Collection and Getting Data into AWS
Introduction

Data Loses Value Quickly Over Time

Direct Connect, Snowball, Snowball Edge, Snowmobile

AWS General Rule Of Thumb

Data Migration Service (Managed Services To Move Your Data To
AWS)

Which Solution Should you Use?

Database Migration Service

DMS Use Cases

Supported Migrations

Migrations

Mass Amount Of Data

Replication

Data Pipeline

Creating Data Pipeline

Some Overlap With Lambda

Key Concepts

Data Pipeline for On-premises

Lambda, API Gateway, and CloudFront

Definitions

Lambda Events and Integration

Lambda – Use Cases

Lambda Limits

Serverless Architectures

Kinesis and Lambda Integrations

Kinesis and Lambda Scaling

Comparing our Options

Time Required To Move Data Into AWS

Choosing A Service

Mind Map

Practice Questions

Chapter 06: Amazon Elastic Map Reduce (EMR)
Introduction

Apache Hadoop and EMR Software Collection

Map Reduce

Distributed File Systems

Hadoop Distributed File System (HDFS)

EMR

EMR Architecture

Introduction

Primary Node Features

Core Node Features

Task Node Features

Single Availability Zone Concept

EMR Storage Options

EMR Operations - Transient vs. Long-Running

Transient Clusters

Long-Running Clusters

Considerations

EMR Operations - Choosing an Instance Type

Choosing an Instance Type

EMR Operations - Choosing the Right Number of Instances

Choosing the Right Number of Instances

HDFS Capacity Guidelines

EMR Operations - On-Demand and Spot Instances

Quick Reference for Application Scenarios

EMR Operations - Monitoring and Resizing Clusters

CloudWatch Events

CloudWatch Metrics

Monitor a Cluster with UI

Resizing a Cluster – Manually

Resizing a Cluster – Auto Scaling

EMR File Storage and Compression

How Hadoop Splits Files?

Different Compression Algorithms

The Benefits of File Compression

Different EMR File Formats

File Sizes Best Practices

S3DistCp Command

Lab 6-01: Data Analytics with Spark and EMR

Introduction

Problem

Solution

Mind Map

Practice Questions

Chapter 07: Using Redshift
Introduction

Redshift Architecture

Cluster

Node

Slice

Redshift Query Process

Redshift in the AWS Service Ecosystem

Redshift Use Cases

Data Warehouse VS Data Lake

What makes Redshift Different?

Redshift Table Design

Data Types

Compression

Sort Keys

Distribution Styles

Constraints

Redshift Spectrum

How do you query flow?

Demo 7-01: Redshift

Lab 7-01: Querying Data from Multiple Redshift Spectrum Tables

Introduction

Problem

Solution

Mind Map

Practice Questions

Chapter 08: Redshift Maintenance and Operations
Launching a Redshift Cluster

Interfaces

Required Parameters

Considerations

Demo 8-01: Launching A Cluster In A Web Console

Resizing a Redshift Cluster

Classic Resize

Elastic Resize

Utilizing Vacuum and Deep Copy

The Vacuum Process

Vacuum Options

Automatic Vacuuming

Deep Copy Methods

Backup and Restore

Snapshots

Restoring from Snapshot

Loading Data From S3

Unloading Data To S3

Monitoring

Redshift Console

CloudWatch

Demo 8-02: Monitoring An Active Cluster

Lab 8-01: Manually Migrating Data Between Redshift Clusters

Introduction

Problem

Solution

Mind Map

Practice Questions

Chapter 09: AWS Glue, Athena, and QuickSight
Introduction

Glue Data Catalog

What is AWS?

AWS Glue - Use cases

AWS Glue Components

AWS Glue Data Catalog

Demo 9-01: Populating the AWS Glue Data Catalog

Converting Semi-Structured Schemas to Rational Schemas

Glue Jobs

AWS Glue Jobs

Workflow Overview

Lab 9-01: AWS Glue Jobs

Output File Formats

Data Processing Units (DPUs)

Glue Jobs Run In Isolated

AWS Glue Jobs – Glue jobs are the business logic that performs
ETLs work in AWS Glue.

Workflow Overview – Various parts are needed for an AWS Glue
job.

Output Data Formats – The different output formats Glue Jobs can
perform.

Data Processing Units (DPUs) – The units used for processing your
Glue Jobs.

Glue Jobs Run In Isolated – Glue Jobs run on virtual resources, Glue
jobs needs, and how traffic is governed.

Job Bookmarks

Explanation

Job Bookmarks Defined

Options For Job Bookmarks

Demo 9-01: How To Set Up Job Bookmarks

Getting Started with Athena

What Is Athena?

Athena Federated Queries

Athena Data Formats And Integrations

Connecting to Data Sources

More On Integrations

Athena Use Cases

Demo 9-02: Amazon Athena
Introduction
Problem
Solution

When To Use Athena

S3 Select And Glacier Select

Overview Of Similar Services

Comparing Athena To Other Services

QuickSight Visualizations and Dashboards

Amazon QuickSight

How QuickSight Works?

Visualization types

QuickSight Dashboards

QuickSight Security and Authentication

QuickSight Data Encryption

Connecting To AWS Resources

Identity And Access Management In Quicksight

Best Practices For Security

Mind Map

Practice Questions

Chapter 10: Elasticsearch
Introduction to Elasticsearch

Elasticsearch Service

Searching

Logs Into Data

Using Elasticsearch

JSON All the Way Down

The Interface

Loading Data

Demonstration Pipeline

Service Integration

Demo 10-01: Querying Elasticsearch

Visualizing Elasticsearch Data

Visualization Tools Examples

What can We Visualize?

Lab 10-01: Implementing an Elasticsearch (OpenSearch) Backed
Search Microservice

Introduction

Problem
Solution

Mind Map

Practice Questions

Chapter 11: AWS Security Services
Introduction

Overview
Identity Access Management

Introduction
IAM Concept
IAM Permission Objects
IAM Features
IAM Secured Services
External Identity Federation

Key Management System

Introduction
KMS Concept
AWS KMS Keys
Customer Managed Keys
Symmetric KMS Keys
Asymmetric KMS Keys
Data Keys
Customer Master Key
Envelope Encryption
KMS Encryption Flows

Secrets Manager

Secrets Manager Concept

Secrets Manager Features
Secret Storage
Different Secrets Types Store in AWS Secrets Manager
Encrypt Secret Data
Secret Rotation
Automatically Rotate Secrets
Rotation Strategies

VPC Network Security Features

VPC Concept
Components of VPC
Network Access Control List
Security Groups
Traffic Monitoring

Lab 11-01: Advanced S3 Security Configuration

Introduction

Problem

Solution

Mind Map

Practice Questions
Answers

Chapter 02: Amazon Simple Storage Service

Chapter 03: Databases in AWS

Chapter 04: Collecting Streaming Data

Chapter 05: Data Collection and Getting Data into AWS

Chapter 06: Amazon Elastic Map Reduce

Chapter 07: Using Redshift

Chapter 08: Redshift Maintenance and Operations

Chapter 09: AWS Glue, Athena, and QuickSight

Chapter 10: ElasticSearch

Chapter 11: AWS Security Services
Acronyms
References
About Our Products

AWS Cloud Certifications

AWS Certifications are industry-recognized credentials that validate
your technical cloud skills and expertise while assisting in your career
growth. These are one of the most valuable IT certifications right now
since AWS has established an overwhelming lead in the public cloud
market. Even with the presence of several tough competitors such as
Microsoft Azure, Google Cloud Engine, and Rackspace, AWS is by far
the dominant public cloud platform today, with an astounding
collection of proprietary services that continues to grow.

The two key reasons as to why AWS certifications are prevailing in the
current cloud-oriented job market:

There’s a dire need for skilled cloud engineers, developers,
and architects – and the current shortage of experts is
expected to continue into the foreseeable future.
AWS certifications stand out for their thoroughness, rigor,
consistency, and appropriateness for critical cloud
engineering positions.

Value of AWS Certifications

AWS places equal emphasis on sound conceptual knowledge of its
entire platform, as well as on hands-on experience with the AWS
infrastructure and its many unique and complex components and
services.

For Individuals

Demonstrates your expertise to design, deploy, and operate
highly available, cost-effective, and secure applications on
AWS.
Gain recognition and visibility for your proven skills and

proficiency with AWS.
Earn tangible benefits such as access to the AWS Certified
LinkedIn Community, invite to AWS Certification
Appreciation Receptions and Lounges, AWS Certification
Practice Exam Voucher, Digital Badge for certification
validation, AWS Certified Logo usage, access to AWS
Certified Store.
Foster credibility with your employer and peers.

For Employers

Identify skilled professionals to lead IT initiatives with AWS
technologies.
Reduce risks and costs to implement your workloads and
projects on the AWS platform.
Increase customer satisfaction.

Types of Certification

Role-Based Certifications:

Foundational - Validates overall understanding of the AWS
Cloud. Prerequisite to achieving Specialty certification or an
optional start towards Associate certification.
Associate - Technical role-based certifications. No
prerequisite.
Professional - Highest level technical role-based
certification. Relevant Associate certification required.

Specialty Certifications:

Validate advanced skills in specific technical areas.
Require one active role-based certification.

Certification Roadmap

About AWS – Certified Data Analytics –
Specialty Exam

Exam Questions
Case study, short answer, repeated answer,

MCQs

Number of Questions 250-270

Time to Complete 180 minutes

Exam Fee 300 USD

Overview of AWS Data Analytics – Specialty Certification

Individuals with experience and competence working with AWS
services to design, construct, protect, and maintain analytics systems
can pursue the AWS Certified Data Analytics - Specialty. We
recommend that you have the following items before taking this exam:

Experience with typical data analytics technologies for five years
Two years of hands-on experience and competence designing, building, securing,
and maintaining analytics applications using AWS services.
Ability to define AWS data analytics services and how they work together Ability

to explain how AWS data analytics services fit into the data lifecycle of collection,
storage, processing, and visualizations

The basic knowledge and skills required at this level should include all
of the areas, and objective components are given below:

AWS Knowledge

A minimum of 5 years of experience with popular data analytics tools
is required for the target applicant. The ideal applicant will also have
at least 2 years of hands-on experience and skill designing, building,
securing, and maintaining analytics solutions using AWS services.

General IT Knowledge

1-2 years’ experience as a system’s administrator in a systems
operations role
Experience in understanding virtualization technology
Monitoring and auditing system’s experience
Knowledge of networking concepts (DNS, TCP/IP, and
Firewalls)
Ability to collaborate with developers

Intended Audience

Eligible candidates for this exam must have:

One or more years of hands-on experience in operating AWS-
based applications
Experience in provisioning, operating and maintaining
systems running on AWS
Ability to identify and gather requirements to define a
solution to be built and operated on AWS
Capabilities to provide AWS operations and deployment
guidance and best practices throughout the life cycle of a

project

Recommended AWS Knowledge

Determine the operational characteristics of the collection
system
Select a collection system that handles the frequency,
volume, and the source of data
Select a collection system that addresses the key properties of
data, such as order, format, and compression
Determine the operational characteristics of the storage
solution for analytics
Determine data access and retrieval patterns
Select appropriate data layout, schema, structure, and format
Define data lifecycle based on usage patterns and business
requirements
Determine the appropriate system for cataloging data and
managing metadata
Determine appropriate data processing solution
requirements
Design a solution for transforming and preparing data for
analysis
Automate and operationalize data processing solutions
Determine the operational characteristics of the analysis and
visualization solution
Select the appropriate data analysis solution for a given
scenario
Select the appropriate data visualization solution for a given
scenario
Select appropriate authentication and authorization

mechanisms
Apply data protection and encryption techniques
Apply data governance and compliance controls

The table below lists the main content domains and their weightings
on the exam.

 Domain Percentage

Domain 1 Collection 18%

Domain 2 Storage and Data Management 22%

Domain 3 Processing 24%

Domain 4 Analysis and Virtualization 18%

Domain 5 Security 18%

Total 100%

CHAPTER 01: INTRODUCTION

Course Introduction
Individuals with experience and skills working with AWS services to
develop, create, protect, and maintain analytics systems can pursue the
AWS Certified Data Analytics - Specialty. This course walks you
through the different concepts, including how to design analytical
questions, then gather, analyze, and prepare data, while evaluating the
data and uncovering insights from it.

Recommended AWS Knowledge
The ideal applicant should have:

1) A minimum of five years of expertise with popular data analytics
tools

2) Two years of hands-on experience and competence in designing,
building, securing, and maintaining analytics systems using AWS
services

3) The ability to create AWS data analytics services and comprehend
how they interact

4) An understanding of how AWS data analytics services fit within
the data lifecycle of collection, storage, processing, and
visualization

What is Data Analytics?
Inspection, cleaning, converting, and modeling data to uncover usable
information, informing conclusions, and assisting decision-making are
what data analytics is all about. Simply said, data analytics implies that
we have some data, and we need to answer questions with it. We have a

process that needs to be improved, and we can use the data we collect
from our users in different locations and on different devices to answer
questions and improve the processes that occur within our data
collection, data processing, data analytics, and our understanding of
what that data represents.

Steps for Success
To understand the different steps that go into a data analytics pipeline,
we need to understand the idea of the steps for a successful data
analytics pipeline.

Figure 1-01: Steps for Success

We first need to define the questions we need to answer and the types
of problems we are trying to solve. Then, we must define the types of
insights we are looking for. Once we define those questions that need
to be answered, we can then start the data collection process. Data can

come from a single source or many different sources. We need to find
ways to build applications around collecting mass amounts of data from
various sources and assembling it all in either a single source or a way
to interact with a single source of data. The data that we collect can be
streaming data, real-time data, historical data, or data that gets
produced every so often. As we collect that data, we need to think
about what type of preparations need to be done on that data before we
store it off. After this, we will analyze that data, run queries on that
data, build charts and graphs, and metrics from that data. Once we
understand how to prepare our data, we can then start the data analysis
process. This means running queries on the data, taking subsets,
merges, or joins of the data, and starting the initial analysis to answer
and improve the questions we defined at the beginning of our cycle. As
we analyze that data, we start to have interpretations. Hence, we start
to answer some of those questions. We might get some questions
wrong; we might not have enough data; we might have to go back and
collect more data, or we might have to prepare the data differently. But
once we start to interpret the data, we can start to discover and figure
out if our questions are being answered. If our process improves, we can
refine and define more questions that need to be answered from that
data. Therefore, it is a cycle that happens continually.

Digital Use Cases
1. Application Monitoring: We can monitor our application

performance, stability, and resource usage with data analytics to
make our applications more efficient and cost-effective.

2. Financial Analysis: Financial analysis is another huge area for
data analytics. We can gain useful insights from huge amounts
of financial data.

3. Machine Learning: We can manage our large data sets, train

models, feed information from our machine learning application
back into that same data analytics system to help refine those
models and generally improve our machine learning systems
through the use of data analytics tools.

4. IOT Management: We can track, manage, and refine
distributed networks of discrete devices using data analytics
tools.

CHAPTER 02: AMAZON SIMPLE
STORAGE SERVICE

Introduction to S3
In our data analytics steps for success, S3 will fall in data collection
primarily. It has features that will use in data preparation, analysis, and
data interpretation.

Figure 2-01: Steps for Success

Amazon S3 is a type of object storage that allows you to store and
recover any quantity of data from any location. It is a low-cost storage
solution with business resilience, reliability, efficiency, privacy, and
infinite expansion. S3 uses an object called the bucket. The bucket is
the atomic unit for S3.

Amazon S3 offers a straightforward web service interface for storing and
retrieving any amount of data from any location at any time. You may
quickly create projects that integrate cloud-native storage using this
service. Because Amazon S3 is easily customizable and you only pay for
what you use, you can start small and scale up as needed without
sacrificing performance or dependability.

Getting Data Into S3 - Concepts, AWS
Management Console, AWS CLI
Upload Interfaces
When we upload data at S3, we have several interfaces to work with.
The AWS management console, the AWS CLI, and several AWS SDKs.

Figure 2-02: Interfaces

AWS Management Console

When we use the management console, we use a graphical user
interface. We can add files and folders. We can set most of the options
to upload with this interface.

Figure 2-03: AWS Management Console

AWS CLI

When using the AWS CLI, we enter commands in our terminal that will
allow us to move data into the S3 bucket. We can use these commands
to retrieve data from S3 buckets. Shown in the screenshot is the copy
command. We also have the move command and a synchronized
command.

Figure 2-04: AWS CLI

AWS SDKs

Then comes the last interface, i.e., AWS SDKs. Shown in the screenshot
is the Python SDK, which is called Boto3. When we use these SDKs, we
will write code that will make API calls, which the other two interfaces
do. But these are a little more direct. They are closer to the actual API
calls. In the screenshot, we are looking at the put object API call. There
is also a copy and copy object API call. These are now analogous
commands in the Boto3 SDK. They do essentially the same thing, but
they use different interfaces. Hence, the syntax is a little different.
There is also the upload file and upload file object actions. These are
very similar; they just use different interfaces. The code in this
screenshot is using Boto3, which is the Python SDK. There are also
official AWS SDKs for C ++, Go, Java, Javascript, .net, Node JS, PHP, and
Ruby.

Figure 2-05: AWS SDKs

Transfer Acceleration
Another feature of S3 that we should be aware of when talking about
getting data into S3 is Transfer Acceleration. To understand why we use
Transfer Acceleration and how it works, let's look at a scenario. Assume
we have an application. Our application will store data in a bucket in
the us-east-1 region. And that works very well to send and receive data.
Our users will add items to the bucket and read articles. As long as our
users are properly close to the us-east-1 region, they will not have any
issues. We will see some latency once we get out to the other
geographic locations. As users get further and further away, that latency
will increase. So, they may complain about how long it takes to get
things from our S3 data store.

If our application user base keeps growing, we will run into issues as we
have users worldwide.

Figure 2-06: Transfer Acceleration Scenario (a)

Therefore, to deal with it, the first thing we will likely implement is
CloudFront, which will allow us to get data to users more quickly with a
network of caching nodes. These caching nodes have an optimized
network path between them. Hence, data goes from our Bucket into
Cloud Front and our users. If an object is not cached in CloudFront, it
can take a little while to get to our end user. But it is still going to use
those optimized network paths. It significantly increases the usability of
our application for global users.

Figure 2-07: Implementing CloudFront

But we still have an issue. That is, we need our users to get data into our

bucket. Hence, we have the same problem as before. We have solved
the download side of the communication. However, we will suffer from
increased latency as we increase geographic distance. The users across
the ocean are going to have failed uploads likely and will be unhappy.
Hence, this is where Transfer Acceleration comes in.

Figure 2-08: Increased Latency

Transfer Acceleration is enabled per bucket. It uses distinct endpoints.
If you are hard writing endpoints, you will use bucketname.S3-
accelerate.amazonaws.com. Or, if you are using IPv6, you would add
a dual-stack between accelerate and Amazonaws.com, i.e.,
bucketname.S3-accelerate.dualstack.amazonaws.com. There are
additional costs for using Transfer Acceleration. You will be charged 4
cents per gigabyte of data transferred from the United States to Europe
and Japan edge locations and 8 cents per gigabyte for all other AWS
edge locations.

Transfer Acceleration leverages the edge locations to send data back to
S3. Hence, this becomes a content ingestion network and not a
distribution network. It means that our users use optimized network
links to get our data or send data to us.

Figure 2-09: Transfer Acceleration

Demo 2-01: AWS Management Console
1. Log into AWS console.
2. Go to services and click on S3.

3. There are several buckets here. Click on das-demo.

4. Click on Upload.

5. The graphical user interface will be shown.

6. Set the destination.

7. Turn on bucket versioning.

8. Now, set the permissions. You can use an access control list. A
few predefined access controls lists are available, or you can write
your access control list for this upload.

9. Set the properties.

10. Set the storage class.

11. Here, we can decide if we want encryption turned on and which
key we are going to use.

12. We can add tags, and we can add additional metadata.

13. To upload a file, click Add Files.

14. We have web console.txt.

15. The file is ready to go.

16. Click Upload.

17. You will see that the file has been uploaded.

Demo 2-02: AWS CLI
1. Open the route of the folder.

2. All of these files are available on the GitHub link given below.
 https://github.com/linuxacademy/Content-AWS-Certified-Data-
Analytics---
Speciality/tree/master/Amazon_Simple_Storage_Service/Getting_Data_Into_S3

3. Move into the CLI directory and ls this folder. You can see a
CLI.txt, a movemeCLI.txt, and a syncmeCLI.txt.

https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---Speciality/tree/master/Amazon_Simple_Storage_Service/Getting_Data_Into_S3

4. If you need to look at the content of these files, you can cat one
out and take a look. It just says hi, I came from the CLI or hi, I
was moved from the CLI, so forth.

5. We will start with our copy command. We are first going to get
the version. We are using version 2. We can enter AWS S3
because we are going to use an S3 command. We are going to
copy cli.txt to S3://das-demos.

6. The copy command is going to leave the file in the source and
copy it to the destination. We can see that we have uploaded
cli.txt to our S3 bucket das-demos. And it has the key cli.txt.

7. You also have the move command. It is beneficial to use spot
instances as we know that our data will not necessarily be with

that instance. You cannot retain it with the move command on
the source and only have it in the destination. You have the
movemeCLI.txt.

8. Once you run this command, you should see that the
movemeCLI.txt is only in your S3 bucket. Confirm that your
cli.txt made it to your bucket once you have moved the other
files. Again, type aws s3 mv, movemeCLI.txt to S3://das-
demos.

9. The files have been moved.

10. To confirm this, use ls the directory that you are in.

11. Now, we will use another S3 command, AWS s3 ls das-demos. S3
ls only functions for buckets and bucket prefixes. Therefore, we
do not need to specify that it is an S3 bucket with the s3://
because it will not do anything for local directories.

12. We will see the contents of our bucket. We have cli.txt,
movemeCLI.txt, and the web console.txt that we added with
the web console.

13. Lastly, the sync command will only move the files in our bucket.
It also uses the last modified flag to detect if that file is changed

versus the one in the bucket. If the file has changed, it will upload
it again so that the newest version is in our bucket.

14. To do this, type aws s3 sync. s3://das-demo.
15. We want to sync the current folder. Hence, we should only see

our syncmeCLI.txt be uploaded from this command because the
cli.txt is already in our bucket.

16. Hit Enter.
17. As you can see, we have moved our DS_store as well.

18. It will also move hidden files by default. Therefore, you need to
be aware of that because the DAS store in this directory was
moved with the sync.

19. Again, we can ls our bucket and confirm that our file has made it
to our bucket.

20. You can see the syncmeCLI.txt and the DS_store have been
moved to your bucket.

21. You can see several files that are not available in the current
directory. To accomplish that, we are going to type aws s3 sync
S3://das-demos.

22. In addition, you can see the two files that you did not download.
It is useful because you are not moving data that we already have.

23. You can see that you have all your files in your bucket now.

Getting Data Into S3 - Boto3
Demo: Python Boto3 SDK

Note: The scripts used in the demo are available in the following
GitHub link:

https://github.com/linuxacademy/Content-AWS-Certified-Data-
Analytics---
Speciality/tree/master/Amazon_Simple_Storage_Service/Getting_Data_Into_S3

1. Click on the Boto3 directory. Here, we have a boto3upload.txt
and boto3actions.py.

2. Click on boto3actions.py.

https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---Speciality/tree/master/Amazon_Simple_Storage_Service/Getting_Data_Into_S3

3. Here, we have a script prepared to perform our actions.

4. First, we will import Boto3 to our Python script, making it
available to use in the script.

5. We are going to initialize our two interfaces. We have an S3 client
variable that will be the reference to the Boto3 client S3. We also
have an S3 resource variable, which refers to the Boto3 resource for
S3.

6. We will use the put object to upload a binary object from our
script to our S3 bucket.

7. We will capture the response of our API call in the response
variable. We are going to use the S3 client. And we are going to
put_object. We need to provide a body of our object, which will be
our byte string. And we need to specify a bucket, which is our das-
demos bucket. And also, a key for our object, and then we will print
the response to verify that there were no errors.

8. Next, we have the copy command. We need to specify the source
for our copy. Hence, we will set a bucket as the das-demos, and our
Key will be boto3put.txt. It is the source, so we will copy the object
we just uploaded with the put_object call and send it to a

destination.

9. Next, there is the copy_object operation, which uses the S3 client.

10. Now, we are going to do the upload_file operation. Here, we can
see again; it is a resource operation, not a client operation. It is a meta
operation because it will interact with the operating system and not
anything else in our script.

11. The next call is the client version of the upload operation.

12. Next part is commented out because we do not want to perform

this operation on our bucket. It can take 30 minutes to take effect, but
this shows how you would turn on Transfer Acceleration for the
bucket with the SDK.

We are going to use our S3 client. We are going to
put_bucket_accelerate_configuration to the Bucket das-demos.
Our AccelerateConfiguration is Status Enabled. It can also be
suspended to disable Transfer Acceleration.

13. Go back to the terminal, and we will look at our operation. We
need to make sure that we are in the correct folder.

14. We will check our Python version. We are using Python 3.7.7.

15. To run the script, type python boto3actions.py and hit enter. You
will see the output of your operations here. We are looking for the
200's. Some of them do not return anything so that we will get a
None.

16. Go back to the web console to confirm that the files are there.
Refresh the page. We should see our CLI files, DS_Store file, and
Boto3 files. We see cli.txt, movemeCLI.txt, syncmeCLI.txt, as well
as the webconsole.txt. We also have our boto3put.txt, the
boto3copy.txt, boto3copyobject.txt, and our boto3upload.txt files.

EXAM TIP:
When we upload data at S3, we have several interfaces to work with.

The AWS management console, the AWS CLI, and several AWS SDKs.
When we use the management console, we use a graphical user

interface. We can add files and folders. We can set most of the options
for upload with this interface.

When using the AWS CLI, we enter commands in our terminal that
will allow us to move data into our S3 bucket.

Transfer Acceleration is enabled per bucket.

S3 Multipart Upload
What do we do when we have a lot of data?
If we think about a large file or object in the context of S3, we can think
about it as a large building. Moving it all at once is impractical if we are
moving a building. It can be time-consuming if we have to carry a
completely big building all by itself, in one piece, it will be moved very
slowly, and we are probably going to damage the structure, and it is
potentially expensive. Hence, when we talk about moving a large
object, we run into some same issues. It is kind of impractical.
Depending on the compute resources involved, it will be time-
consuming might be expensive. We might have a lot of idle CPU cycles
because we are just moving a large file all at once. To get around that,
multipart upload comes in. If we look at some of the limitations of the
standard ways to get data into S3, a single S3 Put is only going to let us
upload five gigabytes of data in a single Put, but an S3 object can be up
to five tebibytes.

To get a five-tebibyte object into S3, we will use a multipart upload. It
has three steps, like if we were going to move a building, we would
probably break it down into components and have a plan and use that
plan to reassemble those components on the other side of the move.

Prepare Data: We will break the data into reasonably sized
pieces.
Move Pieces: We will perform the multipart upload steps to
move all data to your S3 bucket.
S3 puts it together: We will let S3 know the upload is
complete, and S3 puts the data back together in the bucket.

Three Multipart Upload API Calls
There are three API calls that we use to perform this process.

1) Create Multipart Upload: First, we have the
CreateMultipartUpload API call. It returns Bucket, Key, and
UploadID. The main thing we need from returning this API call is
the UploadID. The multipart upload acts as a meta object that
stores all of the information about our upload while it is
happening. It is going to hold the information about all the parts.

2) Upload Parts: Next, we have the UploadPart API call. We need
to provide Bucket, Key, Part Number, and Upload ID. It returns an
ETag. It is very important because we need to deliver that when
we do our final API call.

3) Complete Multipart Upload: Finally, we have the
CompleteMultipartUpload API call. It returns Bucket, ETags,
and Key. We need to provide Bucket, Key, Part Number, Upload
ID, all Part Numbers, and ETags.

Considerations
We have some considerations for this process.

1) Parts: Multipart uploads can be made up of up to 10,000
fragments.
2) Overwrite: Specifying the same part number as a previously
uploaded part can be utilized to overwrite that part. We can
overwrite the parts while the multipart upload is still in progress.
Suppose something in your log file changes, or there is an update to
a section of it. In that case, you can overwrite that part, that that
section is in and have the latest version of the log file in your object
when it uploads, or if one of the parts fails or has some corrupted
data in it, you can write it again into the multipart upload. It will use
whatever the latest data is for that piece of the upload when it is
reassembled.
3) Auto-Abort: A bucket lifecycle policy that can be utilized to abort

multipart uploads after a specified time automatically. It prevents
situations where a multipart upload gets started, something goes
wrong with it, and the closing piece of it never goes through, or there
is an error when the close is requested that upload will not work
until the upload is completed or aborted. Generally, in a production
system, it is good to have an auto abort configured for your bucket if
you know that there will be a lot of multipart uploads going to that
bucket.

Best Practices and Limitations
There are also a few best practices and limitations that we need to think
about.

AWS recommends considering multipart upload for files more
significant than a hundred megabytes. It means that you might
want to use multipart upload for anything larger than a hundred
megabytes (100 MiB).
We need to consider the limitation that all parts must be at least
five megabytes (5 MiB), except for the final part.
When we put these together, parts should be between five and a
hundred megabytes.

Demo 2-03: Exploring Multipart Upload Script
We will take a look at a script that is provided in the GitHub link given
below.

https://github.com/linuxacademy/Content-AWS-Certified-Data-
Analytics---
Speciality/tree/master/Amazon_Simple_Storage_Service/Multipart_Upload

It performs multipart uploads, and we will go through it, run it, and
verify that our upload worked.

1. This script is written in Python; we use the Python SDK for AWS,

https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---Speciality/tree/master/Amazon_Simple_Storage_Service/Multipart_Upload

Boto3. It is imported here.

2. We have three functions defined in our script that represent the
three steps in our multipart upload. We have our start multipart
upload piece. We have to add the upload or the add part and then
the end upload. All three of these will initialize the Boto3 client for
S3 and make a single call. Each one of those calls needs some different
parameters passed into it.

3. To create the multipart upload, we must pass in a bucket and a
key for our object. It will return, amongst other things, in the
response and Upload ID. We need this for the rest of our calls.

4. We then have the add part function. It uses a message queue to
pass information between the parent process, which will be the
foremost process for our script, and the child process, which will be
the code within this function.

5. Just so we know when this is finished, we will print a little message
that says Finished Part, the part number, and then the ETag for
that part.

6. Finally, we have a function to end our upload. We provide that
with a bucket, a key, the upload ID, and the finished parts, which
will be the dictionaries that we will gather. Again, we have a fresh
client. We will use the complete multipart upload call.

7. We have an ArgumentParser. We need to provide these, and a few
of them are optional. We need to deliver a file. We do not have to
provide a key. We need to provide a bucket and a chunk size.

8. This ends up looking like a dictionary. We will create some
variables that are more convenient than using these full objects and
key accesses. The if statement says that if no key is provided, use the
file name instead of the Key.

9. Then, we need to open our file. We have a list called part_procs
that is going to hold that. We are going to initialize a message queue,
and then we need the messages that are returned. We will store those
in a list called queue_returns.

10. Eventually, how this read operation works removes that data from
the file when it is read. Hence, we can initialize a loop that says while
the chunk size is more significant than zero, we will create a new
process.

11. We will then use list comprehension to break our extensive list into
a list of smaller lists that are the length of our simultaneous process
variable.

12. This part of the script uploads all the parts.

13. When we end our upload, the parts need to be in the correct
order.. Hence, we need to sort the queue return list. We will use the
Key, and the Lambda II lets us iterate through the values in our
inventory.

These final couple of lines in the script say if the name of the process

is the primary, then run the main function. It prevents our child
processes from running any of this code, so we do not end up with
cascading spawning processes.

Demo 2-04: Uploading a File with Multipart Upload
Script

1. We will now go to the terminal in the folder where the script is and
the file we will upload. The file we are uploading is a 1938 cowboy
movie called Where the Buffalo Roam.

2. We will run our script here.

Type python multipartupload.py -f WheretheBuffaloRoam.mp4 -
b das-demos -cs 20.

3. Our upload has started.

4. We can see that it took two minutes and 50 seconds to run our
upload. We can see in our return that we have uploaded to the das-
demos. We can see the ETag for our final object, the Key it ended up
with, the location, and some metadata about the response. We can
see in this that if we were logging this, we might want to keep track of,
and capturing some metrics about the activity in our S3 buckets is the
transfer-encoding. It tells us that it is uploaded with a multipart
upload.

5. Now, log into the AWS console. Click on services and click on S3.

6. We have a das-demos bucket in our account. Click on the das-
demos bucket.

7. We have our file WheretheBuffaloRoam.mp4.

8. Click on Actions and then click on Download.

9. Open the downloaded file and click on the play button.

10. The file has started playing.

EXAM TIP: AWS recommends multipart uploading files more

significant than a hundred megabytes. To get a five-tebibyte object
into S3, we will use multipart upload. It has three steps: Prepare
data, Move Pieces, and lastly, S3 puts it together.

S3 Storage Classes
What are Storage Classes?
Amazon S3 provides a variety of storage classes to satisfy a variety of
use cases. Storage classes can be assigned to individual objects, or the
bucket can be configured to use a specific storage class by default for
anything added to it. These include:

S3 Standard is a storage type for general-purpose storage of
commonly accessed data.
S3 Intelligent-Tiering is utilized for data with uncertain or
changing access patterns. It is more of a management engine
than a storage class itself.
Standard Infrequent Access is used for infrequently accessed
data.
One Zone Infrequent Access is very similar to Standard
Infrequent Access, except it can easily replace data. We will use
this storage class for that data if we have an on-premise data
store that we want to keep a copy of in the cloud for easier
access.
The Glacier storage class is used for data archives that we may
need faster than the Glacier Deep Archive.
The Glacier Deep Archive is also an archival storage class. It is
utilized for digital and long-term archive preservation.

Class Use Cases

Standard General-purpose

Intelligent-Tiering Unknown access pattern

Standard Infrequent Access Weekly to monthly access

One Zone Infrequent Access Easily replaced data

Glacier Archive, acceptable minutes
hours retrieval

Glacier Deep Archive Archive, acceptable hours
retrieval

Table 2-01: Storage Classes and their Use Cases

If we look at the storage cost for each of these storage classes, it is
cheaper at the bottom of the table and more expensive as we move our
way upward.

Figure 2-10: General Purpose Classes

We have a general-purpose category. If we break these classes down
into use cases and if we know our access pattern and will frequently
access our data and store a bit of it, we will use either Standard or
Intelligent-Tiering.

Figure 2-11: Infrequent Access Storage Classes

Then, we have our Infrequent Access Storage Classes. It is the data that
maybe we will access in a longer timeframe. Intelligent-Tiering is
included in both of these because it bridges the gap between these 2.

Figure 2-12: Archival Storage Classes

Then finally, we have Archival Storage Classes. It is for data that we are
keeping or need to keep an original backup.

Availability and Durability
S3 Standard, S3 Standard–IA, S3 Intelligent-Tiering, S3 One Zone–IA, S3
Glacier, and S3 Glacier Deep Archive are all meant to offer
99.999999999 percent (11 9's) data durability over a year. This level of

durability corresponds to a projected yearly loss of 0.000000001 percent
of items. For example, if you store 10,000,000 objects on Amazon S3,
you may anticipate a single object to be lost once every 10,000 years on
average. On Outposts, S3 is meant to store data reliably and
redundantly across several devices and servers. Furthermore, Amazon
S3 Standard, S3 Standard-IA, S3 Glacier, and S3 Glacier Deep Archive
are all built to keep data alive in the case of a complete S3 Availability
Zone failure.

The S3 Standard storage class is designed for 99.99 percent availability,
the S3 Standard-IA storage class and the S3 Intelligent-Tiering storage
class for 99.9% availability, the S3 One Zone-IA storage class for 99.5
percent availability, and the S3 Glacier and S3 Glacier Deep Archive
storage classes for 99.99 percent availability and a 99.9% Service Level
Agreement (SLA).

S3 Standard
S3 Standard provides excellent durability, availability, and performance
object storage for frequently accessed dataS3 Standard is suitable for a
wide range of use cases, including cloud services, dynamic websites,
content distribution, mobile and gaming apps, and big data analytics,
due to its low latency and high throughput. A single bucket can contain
objects stored across S3 Standard, S3 Intelligent-Tiering, S3 Standard-
IA, and S3 One Zone-IA; S3 Storage Classes can be defined at the object
level. You may also utilize S3 Lifecycle policies to migrate items across
storage classes without having to make any modifications to your
application.

Key Features
It is built for 99.999999999 percent object durability across

various Availability Zones.
It is meant to have year-round availability of 99.99 percent.
For availability, it is supported by the Amazon S3 Service Level
Agreement.

S3 Infrequent Access
S3 Standard-IA is for data accessed infrequently but has to be available
quickly when needed. S3 Standard-IA combines S3 Standard's strong
durability, speed, and low latency with a cheap per-GB storage and
retrieval charge. S3 Standard-IA is appropriate for long-term storage,
backups, and data storage for disaster recovery files because of its low
cost and significant performance. A single bucket can contain objects
stored across S3 Standard, S3 Intelligent-Tiering, S3 Standard-IA, S3
One Zone-IA, and S3 Storage Classes can be defined at the object level.
You may also utilize S3 Lifecycle policies to migrate items across
storage classes without having to make any modifications to your
application.

Key Features
It is built to keep 99.999999999 percent of items alive across
various Availability Zones
It is designed to be available 99.9% of the time throughout the
year
It is also backed by the Amazon S3 Service Level Agreement,
which ensures that it is available when needed
Additional Data Write Charge -$0.01 per 1000 Request
Additional Data Retrieval Charge -$0.01 per GB
Objects smaller than 128KB are billed as 128KB objects

S3 One Zone-IA is for data accessed infrequently but available quickly
when needed. S3 One Zone-IA, unlike other S3 Storage Classes that
store data in at least three Availability Zones (AZs), stores data in just

one AZ and costs 20% less than S3 Standard-IA. Customers that want a
lower-cost alternative for seldom accessed data but don't need the
availability and resilience of S3 Standard or S3 Standard-IA should use
S3 One Zone-IA. It is a suitable option for storing off-site backup copies
of on-premises data or data that can be created again. You may also use
it to store data that has been replicated from another AWS Region
using S3 Cross-Region Replication for a lower cost.

S3 One Zone-IA provides the same high durability, throughput, and
latency as S3 Standard, but at a lower cost per GB storage and retrieval.
A single bucket can contain objects stored across S3 Standard, S3
Intelligent-Tiering, S3 Standard-IA, S3 One Zone-IA, and S3 Storage
Classes can be defined at the object level. You may also utilize S3
Lifecycle policies to migrate items across storage classes without having
to make any modifications to your application.

Key Features
It is built to last 99.999999999 percent of the time in a single
Availability Zone.
It is planned to be available 99.5 percent of the time throughout
the year.
For availability, it is backed by the Amazon S3 Service Level
Agreement.

S3 Intelligent Tiering
Independent of object size or retention duration, S3 Intelligent-Tiering
is the best storage class for data with unknown, changing, or
unexpected access patterns. S3 Intelligent-Tiering may be the default
storage class for data lakes, analytics, and new applications.

S3 Intelligent-Tiering monitors our objects for access assigned to the
Intelligent-Tiering storage class. If the object is not accessed for 30

days, it will move it to the configured Infrequent Access storage class.
And once that object is accessed, it will be transferred back to the
Standard storage class. It is where the unknown access pattern comes
in. We will pay to monitor our objects, but we trade off the access cost
of Infrequent Access for this monitoring cost. The monitoring is 1/4 of a
penny per 1,000 objects, and the storage cost will depend on the storage
class the object is in, in the underlying storage class. If it is in Standard
or Infrequent Access, that will determine what we are paying to store
those objects.

Key Features
It is built to last 99.999999999 percent of the time in a single
Availability Zone
It is planned to be available 99.9 percent of the time throughout
the year
For availability, it is backed by the Amazon S3 Service Level
Agreement

S3 Glacier
S3 Glacier is a safe, long-lasting, low-cost data archiving storage type.
You can store any quantity of data reliably at prices comparable to or
lower than on-premises alternatives. S3 Glacier offers three retrieval
options, ranging from a few minutes to hours, to keep costs reasonable
while meeting various demands. You may utilize S3 Lifecycle policies to
move data between the S3 Storage Classes for active data (S3 Standard,
S3 Intelligent-Tiering, S3 Standard-IA, and S3 One Zone-IA) S3 Glacier,
or you can upload objects directly to S3 Glacier.

Key Features
It is built to keep 99.999999999 percent of items alive across
various Availability Zones.

If a whole Availability Zone is lost, data is unaffected.

S3 Glacier Deep Archive
S3 Glacier Deep Archive is Amazon S3's cheapest storage tier, and it
allows for long-term data retention and digital preservation for material
that is only viewed once or twice a year. Clients need to keep data sets
for 7-10 years or more to fulfill regulatory compliance requirements,
such as those in highly regulated industries like financial services,
healthcare, and government. S3 Glacier Deep Archive is a cost-effective
and easy-to-manage replacement to magnetic tape systems, whether
on-premises libraries or off-premises services, and may be used for
backup and disaster recovery. S3 Glacier Deep Archive is a companion
to Amazon S3 Glacier, appropriate for archives where data is often
retrieved, and part of it is needed in minutes. All items in S3 Glacier
Deep Archive are duplicated and stored across at least three
geographically scattered Availability Zones are guaranteed to be
99.999999999 percent durable and may be recovered in less than 12
hours.

Key Features
It is built to keep 99.999999999 percent of items alive across
various Availability Zones
The most affordable storage class, designed for long-term data
retention of 7 to 10 years

EXAM TIP: Storage classes provide ways to manage our performance,
durability, cost, and data retrieval time.

The S3 Standard storage class is a General-Purpose storage class.
The S3 Infrequent Access is used for data that we will only access on

the week-to-month scale for the most part.

The S3 Intelligent-Tiering is a way to get the benefits of the
Standard storage class and the Infrequent Access storage class for a
small fee.

The S3 Glacier is an Archival storage class minutes to hours of data
retrieval time.

In addition, the S3 Glacier Deep Archive is also an Archival storage
class, but it has an hour's data retrieval time. It also has the lowest
storage cost of all of our storage classes.

S3 Lifecycle Policies
Life Of Data
When we talk about the life of data, we mean that we will create our
data, that data will be actively utilized, and then eventually, we will
likely archive or delete that data. Once the data has been formed, it will
be active in either the standard or infrequent access S3 storage class.
And then, it will move over to the archive storage class. We may then
push that data back into active utilization at some point. We can
manage most of this with our lifecycle policy. We do not need to work
potentially millions of objects stored in S3, and all of this will happen
for us automatically.

Data Lifecycle in S3
When we look at the storage classes, we overlap our Venn diagram of
active and archive. Typically, we will bounce from the S3 standard to
the infrequent access storage classes and then move to the archive. We
might move back to standard again and repeat this process in the
lifecycle of our data. It may have a loop around and around, or it may
eventually be deleted after a certain amount of time.

Figure 2-13: Data Lifecycle in S3

How To Make It Happen
It is the skeleton of a lifecycle policy. You can see that there are rules.
We have a filter, a status, the transitions, the expiration for the
procedure, and an ID for each one of our rules. We can write our
lifecycle policies in XML or JSON.

Figure 2-14: Lifecycle Policy Format

Let's assume a scenario to understand how to write a policy. We want
only to manage our logs prefects in our bucket. We want our data to be
an S3 standard for one month, then move to S3 infrequent access for
three months after that, and then move the data into Glacier Deep
Archive for six years, and in eight months, it should be deleted.

To write this policy, we will filter on the prefix of logs. Filters can be a
combination of tags and prefixes. If we wanted to tag data that moves
through our bucket lifecycle at a different pace, we could use tags to
accomplish that and have multiple policies.

Figure 2-15: Writing Policy (i)

After a month, we need to create a transition to move our data from S3
standard to S3 infrequent access. Hence, we will keep this data in the S3
standard for 30 days after it is created and then move it to standard rare
access after those 30 days. We have various storage classes that we can
select. We have normally reduced redundancy, which is no longer used
because we have the infrequent access storage classes, standard
infrequent access, one zone infrequent access, intelligent tiering,

glacier, and Glacier Deep Archive (referred to as deep archive in these
policies).

Figure 2-16: Writing Policy (ii)

We then need to keep the data in S3 infrequent access for three
months. Hence, we will have days 120 and storage class deep archive
because data will go after these 120 days. You will notice that 120 days is
four months, and that is because these rules are not additive, and we
need to include the time for the previous transitions in any subsequent
changes.

Figure 2-17: Writing Policy (iii)

We then set the expiration for the data with the expiration attribute.
Here, it says that delete it after the data is 2,555 days old.

Figure 2-18: Writing Policy (iv)

You need to provide an ID. It can be any alphanumeric string. We are
going to call this ApplicationLogArchiving.

Figure 2-19: Writing Policy (v)

Demo 2-05: Applying S3 Lifecycle Policy

1) We will apply the following S3 lifecycle policy to our bucket. It is
called the ArchivePolicy.json.

2) The easiest way to apply this policy to the bucket is with the AWS
CLI.

3) Log into the AWS console. Click on services and click on S3.

4) Here, we can see the das-demos bucket. Click on it.

5) Click on Management.

6) Here, we will find the lifecycle rule name. We can see our lifecycle
role, which is ApplicationLogArchiving supplied to the prefix logs. It
moves data into standard infrequent access, Glacier Deep Archive, and
then expires the data. It does not have actions for previous versions.

7) We can click Edit and get some more information.

8) When you create these policies in the console, you use a wizard. It is
what our policy looks like in the wizard. We are going to limit the
scope to specific prefixes or tags. We have the prefix of the log.

9) Then, we have the Lifecycle rules actions.

10) We can see our roles here, and it gives us a warning that this
lifecycle role could potentially be expensive because we will transition
small objects through a glacier, Glacier Deep Archive.

11) We are going to acknowledge that in this wizard.

12) We can see that after the Number of days after object creation is
2,555 days.

13) And then, we can get a review of our policy here.
14) Click Save.

EXAM TIP:
The data life is when we create data; we actively use and archive our

data. That archive data may go back into active use or may reach the

end of its life and be deleted.
Data lifecycles in S3 tend to use the S3 standard, the S3 infrequent

access, and then glacier for archiving our data.
When writing a lifecycle policy, we have to provide a filter for our

policy. We will write transitions r when the data moves between the
different storage classes. Then, we will give an expiration for our data,
which is when the data should be automatically deleted.

S3 Security and Encryption
S3 Security Overview
At AWS, cloud security is a top priority. As an AWS client, you have
access to a data center and network architecture designed to fulfill the
needs of the most security-conscious businesses. When we look at S3
security and encryption, there are many S3 features and integrated
services that provide various functions to maintain the security of our
S3 buckets.

S3 Features

Access Analyzer for S3
Amazon S3 Server Access Logging
Bucket Policy
Bucket Access Control List (ACL)
Cross-Region Replication
Multi-factor authentication (MFA) Delete
Object Access Control List (ACL)
Object Locking
Versioning

Integrated Services

Amazon CloudWatch Alarms
AWS CloudTrail Logs
Identity Access Management (IAM)

VPC Endpoints
Service Control Policies
Key Management Service (KMS)

In-Flight Security
Our S3 Bucket in In-Flight security requires TLS support from the
clients that connect to the S3 buckets. We also have VPC endpoints,
making it so that we can only access our bucket through our VPC. We
can combine that VPC with VPN options to access S3 buckets from the
outside. Then some access control and auditing feature that we can use
to ensure that our above security features are operating in the way we
expect them to.

Figure 2-20: In-Flight Security

1) For mandatory TLS support, the recommendation is that TLS 1.2 or
above is used, but clients must at least support TLS version 1.0.
Additionally, clients must support Perfect Forward Secrecy (PFS)
cipher suites:

- Ephemeral Diffie-Hellman (DHE)
- Elliptic Curve Diffie Hellman Ephemeral (ECDHE)

2) VPC Endpoints create an endpoint within our VPC that we can

use to communicate with the S3 service via the private subnet of our
VPC. So, we don't need to send any data out to the internet. It does
not even need to traverse Amazon's public network space. All the
traffic stays within our VPC. It is very useful because we can lock our
buckets down.
3) If we have locked our bucket down, we may still need to access
our buckets via external clients from our VPC. Therefore, we can use
VPNs to connect to our VPC and then communicate with our
buckets from the desired clients. There are multiple VPN options.
We can build our VPN. There are AWS site-to-site VPN options, and
there are direct connect options.
4) When we talk about access control and auditing, S3 is one of the
oldest services. Hence, it has many layers of security on top, making
it very flexible in how we control access to our buckets. We can use
service control policies at the organizational level. We can use IAM
to control access to buckets. We can use bucket policies. There are
bucket and object ACLs and also object policies. Therefore, there are
few options for setting how users in other services can access our
buckets.
5) For auditing, we have CloudTrail logs, which will log the API calls.
There are also S3 server access logs and the access analyzer for S3.
Hence, we would need to filter those for S3.

At Rest Security
At-rest encryption and security involve client-side encryption and
server-side encryption.

Client-side encryption

Client-side encryption has a few options. We can either store a master

key in the key fundamental management service and use that or
encrypt our objects with an application stored Key. If we use the
customer master key option, we need to use one of the available AWS
SDKs, which are not available in any other client for S3. It is supported
in the following SDKs.

.NET
Go
Java
PHP
Ruby
C++

If we perform client-side application encryption, the application stack is
entirely responsible for encrypting and decrypting the objects stored
and retrieved from S3.

Server-side encryption

For server-side encryption, we have:

S3 Managed Encryption keys (SSE-S3).
We can provide our encryption keys for the encryption, i.e.,
Customer-provided Encryption Keys (SSE-C).
We can use the crucial management service to store keys (SSE-
KMS).

S3 will then use those for server-side encryption.

Client-Side Encryption
For client-side encryption, our application server will request an
encrypted object if we are using the KMS option. Our bucket is going to
return that encrypted object and a cipher blob. The cipher blob
identifies the Key that that object was encrypted with. Our application
server then needs to call KMS for that Key. Hence, it will request the

Key associated with the cipher blob that is returned to the object, and
then a data key is returned for that object. We can then combine our
encrypted object and our plain text data key into a decrypted object.
The SDKs take care of most of this for us, but this is the following
process.

Figure 2-21: Client-Side Encryption

Server-Side Encryption
For server-side encryption, if S3 manages our encryption keys, our
application server will request an object, and S3 will decrypt it and send
it back.

Figure 2-22: S3 Managed Encryption Keys

Using the KMS option, our Key is stored in KMS. Therefore, we request
S3; S3 get the key information from KMS and return the decrypted
object. It will be transparent other than rotating our keys in KMS, and
the important exchange happens automatically.

Figure 2-23: CMK stored in AWS KMS

We can also provide our encryption keys, which tells S3 on the server-
side, encrypt with this key and return the object, and then it is the
application's responsibility to decrypt that object.

Figure 2-24: Customer provided Encryption Keys

The S3 Access Security Waterfall
There is a permission waterfall when we talk about the API and our
various ways to access objects in S3 and control that access. Each one of
the services in the waterfall adds to the flow, and at the bottom line of
the waterfall, they are all combined to create a single policy that
determines whether or not we can access an object or a bucket in S3.

Figure 2-25: S3 Access Security Waterfall

If we look at the waterfall, there are a lot of opportunities for access to
be denied. If we use an organization, the service control policy could
say that this account cannot use S3. We can have an IAM policy, which
can also deny; there is a bucket ACL that may also deny. Therefore,
there are many restricted possibilities here as we move through to our
final pool, representing a combined policy. If there is no decline in any
of these steps that are flattened into a final approach, we will be
provided access for API calls, whatever resources are requested.

It can get quite complicated; it is best to leave the options in this
waterfall alone that do not fit our use case. From the organization's
perspective, we do not want an account in our organization to use S3 at
all. We are just going to turn it off via the service control policy. When
we talk about IAM, maybe we have a group that we want to provide

access to, and the rest of our groups are not allowed to use S3. We can
control that at the bucket policy, ACL, and object ACL and object
policy. These are the original security controls that S3 launched with,
and they permit controlling access from the bucket perspective.

An everyday use case is that if we are hosting a website out of our S3
bucket, we will use a bucket policy that says, this is a public bucket, and
anything in this bucket can be served. We might want to be more
specific about that, in which case would you use the object policy. But
generally, it is better to use multiple buckets if we are storing data; we
do not want it accessible from our public website.

Waterfall Rules

Implicit Deny is the default.
Explicit Allow beats Implicit Deny.
Explicit Deny beats Explicit Allow.

Access Logging, Alerting, and Auditing
We have the S3 server access log and cloud trail logs, and with these
two combined, we can get various granularities of access to our buckets.
It can be used to feed data into CloudWatch, or CloudWatch on its own
can be used for alerting to perform various actions. If a bucket suddenly
receives a considerable amount of requests, we could set up a
CloudWatch alarm that will trigger a Lambda function that will turn off
access to that bucket. Maybe a timer waits a certain amount of time and
then automatically re-enables access to that bucket to resume
operation.

Understanding all the layers of access authorization can get quite
complicated, and that is where the access analyzer for S3 comes in. It
will analyze the various policies and ACLs involved in providing access,

and it will generate a report around what is available. It is useful if there
is a hole that we missed in our access policies that maybe we do not
want to provide access to a bucket through some specific avenue, which
will reveal that for us.

Figure 2-26: Access Logging, Alerting, and Auditing

Object Protection and Replication
Protection

We have an object that is in our S3 bucket. This object happens to be a
beat. We want to protect this object so that it cannot be deleted, or we
are going to put it into a Write Once Read Many modes or WORM. We
can turn on object locking, which prevents the deletion of this object
without disabling object locking.

Alternatively, we can enable multi-factor authentication to delete our
bucket, requiring an MFA token to delete objects in the bucket. It is
useful because we can control this feature with some granularity, and
these users with MFA tokens are allowed to delete objects from a
bucket. All other users are not, which gives our administrators the
ability to remove objects if needed.

We can also turn on versioning for our buckets. It stores the specified
numbers of versions of our objects in the bucket. It can be very useful if

a file becomes corrupted and accidentally stored in a bucket. We can
roll back to an older version.

Figure 2-27: Object Protection

Replication

We can also replicate our bucket across regions. Hence, the objects in
our bucket will be copied to a bucket in a second region bucket. We
will need to have a different name, but this provides disaster recovery in
case there is a loss of the entire AWS region for whatever reason. We
can turn on cross-region replication, and we will still access our
buckets. We may need to update our code to point our applications to
the correct bucket or set up some automatic failover in our application
code. To turn on cross-region replication, you need to enable
versioning. This is because if an object is placed in a bucket and the
replication engine starts, and it is a huge object, that object is replaced.
Suddenly you have an invalid replication occurring. Therefore, the
service can replicate a specific version. Then if that object is overwritten

while replication is still happening, it will complete the reproduction of
the performance that it is copying and then replicate the newer version.
It means that it is possible for there to be some delay in replicating our
objects into our second region. Still, generally, this works out very well
for disaster recovery.

Figure 2-28: Replication

EXAM TIP:
For the S3 security overview, there are lots of S3 security features

and support services.
In-flight security: We have mandatory TLS or VPC endpoints, VPN

options, access control, and auditing.
For at rest encryption, we can perform client-side encryption. We

can use AWS SDKs and perform server-side encryption with the key
management service.

For client-side encryption, we can use a key management service to
hold our keys, and when we do that, the key identifiers stored with
the object are returned where the object and the request can be made
to retrieve the Key. That will allow us to decrypt that object.

There are several server-side encryption options, and which one we
choose will depend on our security requirements.

We have a lot of steps in our waterfall of security that are going to
produce our final policy that dictates whether or not your particular
client gets access to a bucket or objects within that bucket.

For access logging and alerting, there are server access logs in S3.
We also have CloudTrail logs. We can use CloudWatch alarms and the
S3 access analyzer.

For object protection and replication, we can lock our objects. We
can require multi-factor authentication for deleting objects. We can
enable versioning to keep multiple versions of our substances.

Once we have versioning enabled, we can turn on cross-region
replication.

Lab 2-01: Programmatically Utilizing Data from
S3
Introduction
In this lab, we will create a Lambda function that gathers data from S3,
applies some basic formatting, and sends it to API Gateway to be put
into a simple web interface.

Problem
You have been assigned to a team to develop a proof of concept for your
company's low-cost employee directory. The team built a simple web
interface, arranged some placeholder employee data, and uploaded it to
S3. They are experiencing problems moving data from S3 into Lambda,
and they are looking for your help. All 1500 placeholder records from
JSON files stored in an S3 bucket must be collected and returned in a
single return from the Lambda function.

Figure 2-29: Lab Diagram

Solution

Step 1: Investigate the Lab Environment

1) Open the random-userswebsite provided for the lab. The site will
not load yet because you have not assigned the Lambda function an
action.

2) From the AWS Management Console, navigate to S3 using the
Services menu.

3) You should see two buckets in your account: random-users-
<ACCOUNT_NUMBER>, and random-users-data-
<ACCOUNT_NUMBER>.

4) Click on random-users-data-<ACCOUNT_NUMBER>, which is
the data that will populate the website.

5) Click on random-users-<ACCOUNT_NUMBER>, which is your
static website.

6) We can open the user_1.json file and review the user data. You will
collect the data from all three objects and organize it into a single
entity returned in the web interface.

Step 2: Create the Employee Directory Using Objects Keys and
Data from S3

1) Navigate to Lambda using the Services menu.

2) You should see 2 Lambda functions in your account.
3) Select the Users_primary function.

4) In the Code Source section, select function.py and review the code.

5) Replace the existing code with the function_solved.py code provided in the
GitHub link. https://github.com/linuxacademy/Content-AWS-Certified-Data-
Analytics---
Speciality/tree/master/Lab_Assets/programmatically_utilizing_data_from_s3/lambda

https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---Speciality/tree/master/Lab_Assets/programmatically_utilizing_data_from_s3/lambda

6) Copy the random-users-data-<ACCOUNT_NUMBER> bucket
name and paste the bucket name on the s3_bucket = line.
7) Click Deploy.

Step 3: Observe the Results on the Web Interface

1) After the changes are successfully deployed, navigate to the random-
users website. You may need to refresh the page and wait a few
moments for the data to load.

2) All 1500 users should load correctly.

3) Navigate to S3 select the users_1.json object. Click Delete.

4) Type: permanently delete into the text field and click Delete
objects.

5) Navigate back to the random-users website and refresh the page. You
should now have 1000 employee records instead of 1500.

Mind Map

Figure 2-30: Mind Map

Practice Questions
1. Amazon S3 is a type of object storage that allows you to store and
recover any quantity of data from any location. True or false?

True
False

2. When we go to upload data at S3, we have ----------- interfaces to
work with.

4
3
2

3. When we use the ------------, we use a graphical user interface.

The AWS CLI
AWS SDKs
AWS management console

4. If we are using ----------------, we enter commands in our terminal
that will allow us to move data into our S3 bucket.

The AWS CLI
AWS SDKs
AWS management console

5. Transfer Acceleration is enabled per bucket. True or false?

True
False

6. There are no additional costs for using Transfer Acceleration. True
or false?

True
False

7. Transfer Acceleration leverages the edge locations to send data back
to S3. True or false?

True
False

8. To get a five-tebibyte object into S3, we will use multipart upload.
True or false?

True
False

9. There are ------------- API calls that we use to perform multipart
upload process.

Five
Four

A. Three

10. We cannot overwrite the parts while the multipart upload is
still in progress. True or false?

B. True
C. False

11. ------------------- is a storage type for general-purpose storage of
commonly accessed data.

D. S3 Standard
E. S3 Intelligent-Tiering
F. Standard Infrequent Access

12. -------------------- is utilized for data with uncertain or
changing access patterns.

G. S3 Standard
H. S3 Intelligent-Tiering
I. Standard Infrequent Access

13. ---------------- offers three retrieval options, ranging from a few
minutes to hours, to keep prices reasonable while meeting a
variety of demands.

J. S3 Glacier
K. S3 Standard
L. S3 Intelligent-Tiering

14. S3 Glacier Deep Archive is Amazon S3's cheapest storage tier,
and it allows for long-term data retention and digital preservation
for material that is only viewed once or twice a year. True or
false?

M. True
N. False

15. ------------------ is an Archival storage class that has the
minutes to hours data retrieval time.

O. S3 Glacier
P. S3 Standard
Q. S3 Intelligent-Tiering

CHAPTER 03: DATABASES IN AWS

Introduction
In the analytics process, how do you use databases? We will discuss
about databases services in AWS in this chapter. In the analytics
process, how do you use databases? For example, databases. Databases
will, for the most part, be in our data preparation section. They will be a
starting point for aggregating data or a source of data that you will
input into your pipeline, perhaps as a secondary dimension, or collect
and send into our data analysis. It might be moved to a data warehouse
or data lake, or it could be read directly from the database in our
pipeline.

Figure 3-01: Introduction to Databases in AWS

Organizing Data
We might have user profile service metadata application logs and IoT
data. We will take that data and put it in our databases, then gather it
all together, get it organized, and clean up our little pile of data.

Figure 3-02: Organizing Data in the Database

Services
We have the relational database service Aurora, an engine that runs in
the relational database service, DynamoDB, and Elasticache. All of
these have different use cases.

Figure 3-03: AWS Database Services

Database Engines Types

A database engine (sometimes known as a storage engine) is the
software component that enables a Database Management System
(DBMS) to generate, read, update, and delete (GRUD) data from a
database. Most database management systems have an Application
Programming Interface (API) that allows users to communicate with
the underlying engine without going via the DBMS's user interface.

The terms "database engine" and "database server" or "database
management system" are commonly interchanged. The processes and
memory structures of the running database engine are referred to as a
'database instance.'

Relational Database

A relational database is a collection of data objects with specified
relationships and can be easily retrieved. In the relational database
paradigm, data structures such as data tables, indexes, and views are
maintained distinct from physical storage structures, allowing database
managers to alter the physical data storage without affecting the logical
data structure.

Relational databases are used in the enterprise to organize data and
find links between crucial data elements. They simplify managing and
finding information, allowing businesses to make better-informed

decisions and save money. They work effectively with data that is
structured.

When relational engines were in their heyday, data storage was
expensive relative to computing power. Hence, you needed to find a
way to store data a single time, which is what relational engines do. It is
called data normalization. Therefore, in this example figure, you can see
that you have replaced the values on the right with integers in the table
on the left. This way, you only need to store this data once for each
table that references it. It just needs to keep an integer to hold that
relates to the other table. You can then use joins in our queries to join
that data back together.

There are two types of relational engines. You have our row and column
or columnar.

Figure 3-04: Relational Database

EXAM TIP: Relational databases are used in the enterprise to organize
data and find links between crucial data elements.

Row Databases

Row-oriented databases organize data by history and retain all of the

data associated with a record in memory adjacent to each other. Row-
oriented databases are the conventional method of data organization,
and they still offer some important advantages for storing data fast.
They have been designed to read and write rows quickly.

The figure below shows that the row-based engines you will be working
within AWS are Aurora, MySQL, MariaDB, Oracle, and SQL Server.
These engines access data via rows. Hence, they will pick up a whole
row at a time unless there are indexes, but you will not get into that and
use those to perform our queries. It will read through the table shown
below and select these rows.

Figure 3-05: Row Databases

Row Database Use Cases

OLTP-Online Transaction Processing has the following features.

Used for rapid transactions

Protects data through transaction rollback

Ideal for low latency applications

These engines are excellent for OLTP or online transaction processing.
They are used for rapid transactions where you deal with relatively
small pieces of data that will protect the data through transaction

rollback, which the columnar engines do. Typically, these are going to
be used in places where those transactions are very important. If there
is an error with a piece of the trade because you normalized the data,
you will want to roll that transaction back and retry it. These are ideal
for low latency applications like online storefronts or a simple social
media site, but they are not good for data analysis. Running large
queries is going to be fairly slow, and it will congest the engine. That
indicates that it will conflict with the other shorter transactions if you
do very large transactions. That is generally not a good thing for our
application, and hence you have these columnar engines.

EXAM TIP: OLTP databases are often a data source in analytics.

Columnar Databases

A columnar database is a Database Management System (DBMS) that
stores data in columns rather than rows. A columnar database's goal is
to reduce the time it takes to return a query by quickly writing and
reading data to and from hard disc storage. Columnar databases store
data so that disc I/O speed is considerably improved. They are very
useful for data warehousing and analytics.

These engines will be Aurora Postgres, PostgreSQL, Oracle, and
Redshift. Aurora has two different flavors of MySQL compatible or
PostgreSQL compatible. Oracle has a row and columnar-based storage
engine built into it; hence you can choose when you create your tables.
Redshift is technically a data warehouse, but it does use a columnar
type engine, and it is relational hence have included it here as well, and
these are going to read full columns. You can use table partitioning to

shorten the data readout of the column and indexes.

Figure 3-06: Columnar Databases

Columnar Database Use Cases

OLAB – Online Analytics Processing has the following features.

Uses for analytics workloads

Manages large amounts of data

Handles complex long-running query operations

Columnar engines are good for OLAB or online analytics processing,
and when you are talking about data analytics and AWS, they will be
fairly important, particularly RedShift. The RedShift database is
excellent at handling large amounts of data. They do well with those
long-running queries that will interact with large amounts of data. You
need to be aware of the row-based engines because there may be a
source or even a destination for the data going into or coming out of
our analytics workflow.

EXAM TIP: Columnar database's goal is to reduce the time it takes to
return a query by quickly writing and reading data to and from hard disc
storage. Columnar database engines are going to be Aurora Postgres,
PostgreSQL, Oracle, and Redshift.

Non-Relational Database

Non-relational databases (often referred to as ‘NoSQL’ or ‘JSON’ or ‘key:
value’ databases) differ from traditional relational databases because
they are stored in a non-tabular format. Non-relational databases are
substantially more adaptable than relational databases since they can
digest and organize various information side-by-side. Non-relational
databases, on the other hand, should be built on data formats such as
documents. A document can be quite thorough while also including
various data types in multiple forms.

The other variety of databases is going to be non-relational, and we will
start with key-value. For the most part, our key-value databases in AWS
will run on Elasticache. You have Memcached and Redis, and these are
a key and a value. They are very fast relative to other engines because
all the data is stored in memory. The trade-off here is that if our
Elasticache instance goes down or is restarted, for whatever reason, you
could lose all of the data that is stored there. Hence typically, this will
be used as a caching point, but Redis does support disk persistence.
Accordingly, you could use Redis as a primary data store in Elasticache.

Figure 3-07: Non-Relational Database

Key-Value Database

A key-value database is a non-relational database that uses a basic key-
value method to store data. Data is stored in a key-value database as a
collection of key-value pairs. A key serves as a unique identifier. Both
keys and values can be any type of object, from basic to sophisticated
compound objects. Key-value databases are extremely partitioned
tables and can scale horizontally to scales that other databases cannot.
Suppose a current section fills and extra storage space is necessary. In
that case, Amazon DynamoDB assigns additional partitions to the
database.

The graphic below displays an example of data saved in DynamoDB as
key-value pairs.

Figure 3-08: Key-Value Database

EXAM TIP: A key-value database is a non-relational database that
uses a basic key-value method to store data. Data is stored in a key-
value database as a collection of key-value pairs.

Key-Value Database Use Cases

Session Store

When a user checks in to a session-oriented service, such as a web
application, the session begins and continues until the user logs out or
the session expires. The software saves all session-related data in the
main memory or a database during this time. User profile information,
messaging, tailored data and themes, suggestions, targeted promotions,
and discounts are all examples of session data. Unique identification is
assigned to each user session. A quick key-value store is better because
session data is never queried by anything other than the main key. Key-

value databases, in general, may have a lower per-page overhead than
relational databases.

Shopping Cart

An e-commerce website may get billions of orders in seconds during
the Christmas shopping season. Through distributed processing and
storage, key-value databases can scale to accommodate massive
quantities of data and extremely high rates of state changes while
serving millions of concurrent users. Redundancy is incorporated into
key-value databases to tolerate the loss of storage nodes.

Document Database

A document database is a non-relational database that stores and
queries data as JSON-like documents. Documents and document
databases can adapt to the demands of applications due to their
flexible, semi-structured, and hierarchical nature. By employing the
same document-model format as their application code, document
databases make it easier for developers to store and query data in a
database. The document model is particularly suited to use cases where
each document is unique and changes over time, such as catalogs, user
profiles, and content management systems. Flexible indexing, strong ad
hoc searches, and analytics over collections of documents are all
possible with document databases.

Figure 3-09: Document Database

DynamoDB bridges between our key value and the next type, the
document in which DynamoDB can be used as a simple key-value. Still,
you can also use it to store documents, and the data model you set up
when you set up our DynamoDB table will dictate which type it is. You
cannot change the table structure once the table is created. Hence, you
do need to do planning when you are going to utilize DynamoDB. That
planning may just be that you need to make our data model. Therefore,
it can function flexibly. When we talk about the document category on
its own, they are great for documents. Documents are going to be
structured or semi-structured documents. Hence, it could be JSON or
YAML or strings even. The metadata for those documents is going to be
stored in the records. Document DB can be susceptible to scaling
failures.

Figure 3-10: DocumentDB as Key-Value

EXAM TIP: A document database is a non-relational database that
stores and queries data as JSON-like documents.

Document Database Use Cases

Content Management

A document database is an excellent solution for content management
systems such as blogs and video platforms. The application records
each entity that can be kept separate in a document database. Updating
an application when it needs change is easier for a developer with a
document database. Furthermore, the affected documents must be
updated if the data model has to be modified. There is no need to alter
the schema, and no database downtime is required to implement the
modifications.

Catalog

For storing catalog information, document databases are efficient and

useful. For example, varied items in an e-commerce platform typically
have different quantities of characteristics. In relational databases,
managing hundreds of features is wasteful, and reading speed suffers.
Each product's properties may be documented in a single document
using a document database, making it easier to maintain and
understand. Changing the characteristics of one product has no bearing
on the others.

Graph Database

Graph databases are especially suited for storing and traversing
relationships. Relationships are treated as first-class citizens in graph
databases, accounting for the vast bulk of the database's value. Nodes
store data entities, while edges store relationships between things in
graph databases. Edge contains a start node, an end node, a type, and a
direction, and it may be used to define parent-child connections,
actions, and ownership, among other things. A node can have an
infinite number and variety of relationships.

You can navigate a graph along with specified edge types or over the
whole graph in a graph database. The associations between nodes are
not computed at query time but stored in the database, traversing the
joins or relationships in graph databases. Graph databases are useful in
applications like social networking, recommendation engines, and
fraud detection, where it is required to construct linkages between data
and query these relationships efficiently.

The graph below depicts a social network graph. Look at the people
(nodes) and their relationships (edges) to see who a person's "friends of
friends" are, for example, Howard's pals.

Figure 3-11: Graph Database

EXAM TIP: A graph can be navigated along with specified edge types
or over the whole graph in a graph database because the associations
between nodes are not computed at query time but stored in the
database, traversing the joins or relationships in graph databases.

The graph database, which in AWS is Neptune graph databases are not
exactly NoSQL, and they are not non-relational, but they tend to get
lumped in with them. They are more relational plus or hyper relational,
and the data is structured as nodes, which are connected with edges.
The edges will be shared attributes between the nodes, and they are
good at finding hidden patterns in data. Hence, if you are looking at the

structure of graph databases, you will have our nodes to contain data.
You can label a key for the data.

Figure 3-12: Neptune Graph Database

Hence, for instance, as an edge, a job will create connections between
our nodes. In this example, you have a location edge and a job edge,
and you can see that our nodes are connected through those edges.
When you query this data, you provide an entry point. You will want
the node with the name value of John, and you want the location edge.
Therefore, any nodes connected via location to the John node return
those. If you request all of the attributes for the connected nodes, you
will get in John and Kelby in return because they both live in
Washington State.

Figure 3-13: Graph Database Structure

Graph Database Use Cases

Fraud Detection

Sophisticated fraud protection is possible with graph databases. You
can leverage relationships in graph databases to conduct financial and
buy transactions near-real-time. You may discover that, for example, a
potential purchaser is using the same email address and payment card
as a known fraud instance using quick graph queries. Numerous
persons linked with a personal email account or multiple people with
the same IP address but in various physical places may be readily
detected using graph databases.

Recommendation Engines

For recommendation applications, graph databases are an excellent
solution. Relationships between information categories such as
customer interests, friends, and purchase history can be recorded in
graph databases. You may provide product suggestions to users based
on items purchased by others who follow the same sport and have
comparable purchase histories using a highly accessible graph database.

Alternatively, you may find folks who share a friend but have not met
yet and offer a friendship referral.

Relational Database Service
Introduction
Amazon RDS (Amazon Relational Database Service) is a cloud-based
managed service that makes it easier to set up, operate, and scale a
relational database. It offers cost-effectiveness and scalability while
handling time-consuming database management responsibilities,
allowing you to focus on your applications and company.

Amazon RDS offers the functionality of a well-known MySQL,
MariaDB, Oracle, SQL Server, or PostgreSQL database. It implies that
the code, apps, and tools you are already using with your old databases
should operate just fine with Amazon RDS. Amazon RDS can back up
your database automatically and maintain your database software up to
date with the newest version. You have the option of scaling the
processing resources or storage space associated with your relational
database instance. Furthermore, for read-heavy database workloads,
Amazon RDS makes it simple to implement replication to increase
database availability data durability or grow beyond the capacity
restrictions of a single database instance. There are no upfront
expenditures necessary, and you just pay for the resources you use, as
with other Amazon Web Services.

Amazon Aurora, MySQL, MariaDB, Oracle, SQL Server, and
PostgreSQL are all supported by Amazon RDS.

Managed Service

RDS is a managed service. What does this mean? The basic explanation
is that we do not have access to the operating system of the instances
we run in these services. Hence, what we get is a management API that
allows us two manage database instances. RDS runs several engines,
and you have Aurora, MySQL, MariaDB, PostgreSQL, SQL Server, and
Oracle and Aurora in two varieties MySQL and PostgreSQL.

Figure 3-14: Managed Service

Amazon RDS manages every element of establishing a relational
database, from providing infrastructure capacity to installing database
software. Once your database is up and running, Amazon RDS
automates common administrative tasks such as backups and software
upgrades. Amazon RDS also provides synchronous data replication
between Availability Zones with automated failover in Multi-AZ
installations.

Because Amazon RDS enables native database access, you interact with

relational database applications in the same way you would normally. It
means you are still in charge of managing the database settings unique
to your application. You will be in control of creating the relational
structure that best fits your use case and any performance tweaks to
make your database more efficient workflow of your application.

EXAM TIP: Amazon RDS manages every element of establishing a
relational database, from providing infrastructure capacity to
installing database software.

Second Level Service
RDS is considered the second level of service, and to understand that,
we use the dig command. You create a database instance and run a dig
against it. You can get a ton of information about RDS structure from
the simple control. You can also tell that this is Aurora because Aurora
is the only database engine in RDS that will provide us with a cluster
endpoint. It means it connects to whatever the right node is at that
time. Moving further into the command, you can see that the instance
you are connecting to is an Elastic Compute Cloud or an EC2 example.
You know from our EC2 knowledge that you probably have Elastic
Block Store or EBS involved and that Simple Storage service is likely in
the mix as well, and then the fact that Route 53 is probably involved,
that is how RDS creates and manages our DNS endpoints. Hence, RDS
is built from several different services. Amazon has achieved database
engines on EC2 and created a service that simplifies many common use
cases for databases and makes it much easier to do. The trade-off here
is that you do have to pay more than you would for just an EC2

instance, but again, you get time back because you do not need to
manage those databases ourselves on the EC2 examples.

Figure 3-15: Second Level Service

RDS Instance
A DB instance is a standalone database environment that runs on the
cloud. It is the fundamental component of Amazon RDS. A DB instance
can hold numerous user-created databases and be accessed using the
same client tools and applications as a single database instance.

What is an RDS instance? You will have Route 53 hosted endpoints,
which will point to our EC2 instance, which will allow us to connect to
our database engine. You will likely have data stored in EBS, which
provides block storage for our database engine. S3 is used for backups
and snapshots, but it is not included in this graphic. It is used pretty
extensively by EC2 and RDS or data storage.

Figure 3-16: RDS Instance

EXAM TIP: A DB instance is a standalone database environment
that runs on the cloud. It is the fundamental component of
Amazon RDS.

Operation System Access
How do you manage not having operating system access and still tune
our database to function to our workload? You have parameter groups,
which are controlled through the RDS API. You have option groups,
which are also held through the RDS API parameter groups, which will
allow us to change engine parameters, like how logging is configured
and stored various memory management parameters and any other
engine variables. Some operating system variables/option groups are
used to manage plug-ins in some cases. Oracle uses option groups
pretty heavily, whereas PostgreSQL does not use them.

Figure 3-17: Operation System Access

EXAM TIP: No operating system access in AWS RDS.

Disaster Recovery
The big disaster recovery feature for RDS is multi-AZ deployments. The
way that it works is that you are going to have a primary and secondary
instance. In this example, our prime samples are in US West 2A or
secondary ones in US West 2B. These instances are going to be
replicating at the block level. The database engine is not involved at all;
the database engine will not be running at all and on the secondary. It
is going to be sleeping. RDS then monitors the engine, the compute
instances, the EBS volumes, and the replication between those EBS
volumes, and if the machine or the EC2 instance or the EBS volume
fails, it will terminate that instance. That instance will no longer be the
primary, and the secondary in US West 2B will become the primary.
The RDS service will wake up the database engine, and then a new
secondary in our old availability zone US West 2A will be created with
an engine that is not running.

Block-level replication will then be enabled to that secondary, and you

will be in a healthy multi-AZ state. You can run RDS instances in a
single AZ state, which is not recommended for production workflows
for obvious reasons. This multi-AZ failover takes roughly 60 seconds
most of the time, whereas a full instance replacement for a single AZ
deployment can take up to five minutes or even more. Hence generally,
for production workloads, multi-agency is worth it in terms of the
downtime that you can experience if there is an issue with the primary
instance in your deployment. You will also notice that I changed the
engine to MySQL because Aurora handles this differently.

Figure 3-18: Disaster Recovery

EXAM TIP: AWS RDS works on block-level replication.

Neptune
Introduction

Amazon Neptune is a fast, trustworthy, and fully-managed graph
database service that simplifies the design and operation of applications
that deal with vast, linked datasets. Neptune is designed around a
purpose-made, high-performance graph database engine. This engine is
designed to store billions of relationships and query the graph in
milliseconds. Neptune supports the popular graph query languages
Apache TinkerPop Gremlin and W3C's SPARQL, allowing you to
effectively create searches that explore densely linked datasets.
Neptune drives graph application cases, including recommendation
engines, fraud detection, knowledge graphs, medicine discovery, and
network security.

Neptune is extremely available with read replicas, point-in-time
recovery, continuous backup to Amazon S3, and replication across
Availability Zones. Neptune offers data security measures such as
encryption at rest and in transit. Because Neptune is fully managed, you
no longer need to worry about database administration activities such
as hardware provisioning, software patching, setup, configuration, or
backups.

Graph Structure
A graph is a data structure consisting of a finite number of nodes (or
vertices) and edges that link them. In the following examples, circles
represent vertices, and lines indicate edges. An edge (x,y) signals that
the x vertex relates to the y vertex.

We know that a graph has a node from our database engine types
section. Those nodes will contain data, and then the nodes will be
connected via edges. The edges are common data in those nodes. We

can traverse these graphs and collect data secured by the nodes.

Figure 3-19: Graph Database Structure

EXAM TIP: A graph is a data structure consisting of a finite
number of nodes (or vertices) and edges that link them.

Interface Languages
It is two different interface languages that Neptune supports. We have
Apache's TinkerPop Gremlin, or simply Gremlin, and we have the W3C
sparkle protocol, which is used with the resource description
framework or RDF query language.

1. Apache – TinkerPop Germlin
Graph structure property
Interface: WebSocket
Query Pattern: Traversal

Gremlin uses a property graph structure. The interface is a web socket,
and the query pattern is traversal. Hence, Gremlin is structured very
much like a namespace access pattern; G is for Gremlin. You are
accessing a Vertex or node, and you want a node with Washington’s
location. You also care about the name, and you will traverse that place
attribute to any other nodes that have the same location, and you want
to return the name and location. Hence, you will get John and Kelby
when you do that with the data.

Figure 3-20: Traversal Query Structure

EXAM TIP: Gremlin uses a property graph structure. The interface is
a web socket, and the query pattern is traversal.

2. W3C – SPARQL Protocol & RDF Query Language
Graph structure: Resource Description Framework (RDF)
Interface: HTTP Rest
Query Pattern: SQL

Sparkle uses the resource description framework to structure the data.
The interface is a rest API, and it uses SQL to structure its queries. You
have seen so far that the property style graphs resource description
framework still has a node. It still has data within those nodes, and it
also has edges. The difference is that you are going to describe the data
as triples. Whereas you would have a node with several attributes
instead, you will have lots of nodes connected by edges, and you define

those in a triple like, shown below, hence the person John lives in
location, Washington. The prepended key on the data is not required,
but it does help to organize that data and will assist when querying the
information when you are talking about those nodes.

Figure 3-21: RDF Graph Structure

With sparkle, you are going to write a sequel structured query. It is
going to return a table with John and Kelby. You want the person and
location where the location is Washington, and you will return the
person as well. You get the same results, and our traversal is entering
the graph on the first node that it finds a location in Washington, then
it traverses out. You see other areas that are Washington.

Figure 3-22: SPARQL Query Structure

EXAM TIP: Sparkle uses the resource description framework to
structure the data.

Comparison to Relation Database Service
When we compare Neptune to RDS, they are very similar. They are fully
managed. They have parameter and option groups to change settings
that you would have access to at the operating system level, and they
support multi-AZ deployments. Neptune's deployments are more
similar to what you would see with Aurora because there is no engine-
to-engine replication. The replication happens at the storage level, and
it behaves like a cluster with multiple compute nodes attached. There
are similar instance monitoring tools, and you also have snapshots and
backups.

Figure 3-23: RDS VS Neptune

EXAM TIP: Neptune is extremely available with read replicas, point-
in-time recovery, continuous backup to Amazon S3, and replication
across Availability Zones.

Neptune Use Cases
Following are some use cases of Neptune.

We use graphs, as they are very useful for security. They are
used a lot by banks. They are used a lot by blue teams in
cybersecurity. They are good at spotting patterns and analyzing
patterns. Hence, you will see differences in financial
transactions or our application architecture.
They are also used quite a bit in social media because it helps us
to identify connections between people and make suggestions.
Hence maybe running a suggestion engine off of a graph
database that can recognize patterns in profiles and fill in other
pieces of those profiles that you might want to suggest to our
users, or you will target advertising. You know that this person
has an interest in outdoor activities. Hence you are going to
target advertisements about outdoor activities to that person.
Graph databases are also fairly heavily used in the scientific field
because of their pattern recognition and analysis ability.

DocumenDB
Introduction
We are going to build a document about DocumentDB. DocumentDB is
a document store engine. Document store engines typically are going to
format their data as JSON. Hence, you are going to look at this as a
JSON object.

Figure 3-24: JSON Format Database

Amazon DocumentDB (with MongoDB compatibility) is a highly
scalable, dependable, and completely managed database service. You
may run the same application code and utilize the same drivers and
tools with MongoDB with Amazon DocumentDB. Amazon
DocumentDB simplifies the setup, operation, and scaling of MongoDB-
compatible databases in the cloud.

Some programmers may not consider their data model normalized rows
and columns. Data is typically represented as a JSON document at the
application tier because it is more intuitive for developers to think of
their data model as a document.

Document databases have increased in popularity because they allow
you to persist data in a database using the same document model
format in your application code. Document databases offer powerful
and easy-to-use APIs for rapid and flexible development.

EXAM TIP: Amazon DocumentDB (with MongoDB compatibility) is

a highly scalable, dependable, and completely managed database
service.

DocumentDB Features
The features of DocumentDB are that it is MongoDB compatible. Hence
this is a MongoDB drop-in solution for AWS for a managed MongoDB
database. It is compatible. It is not MongoDB. There are a few small
differences, but for the most part, you can interface with DocumentDB
the way you would with a MongoDB database. It is a fully managed
service like RDS. It has storage auto-scaling features. The storage will
only scale upwards, which works like the Aurora storage engine. It can
index JSON data structures. Hence, this is very powerful, but this is also
one of the failing points of MongoDB in general in that if our data
structures become too large then indexing can become very resource-
intensive and can cause issues.

Figure 3-25: AWS DocumentDB Features

Amazon DocumentDB provides a flexible JSON document format, data
types, and efficient indexing. It employs a scale-up, in-memory

optimized design to enable quick query evaluation over many
documents.

Amazon DocumentDB provides a flexible JSON document format, data
types, and efficient indexing, and it employs a scale-up, in-memory
optimized design to enable quick query evaluation over huge amounts
of documents.

When an instance fails, Amazon DocumentDB automatically fails over
to one of up to 15 Amazon DocumentDB replicas you have set up in any
of three Availability Zones. Suppose no Amazon DocumentDB replicas
have been deployed. In that case, Amazon DocumentDB will attempt to
construct a new instance for you automatically in the event of a failure.

EXAM TIP: It is a fully managed service like RDS. It has storage
auto-scaling features. The storage will only scale upwards, which
works very much like the Aurora storage engine.

DocumentDB Use Cases
Following are some use cases of DocumentDB.

Social media profiles are a common use place for this type of
data store because they will hold all these semi-static attributes
of our social media profiles.
Object catalogs are often stored in document store databases;
hence, if you are running, say, a record store and have a big
database of all of the records you have ever had, this will be a
great place to store those things.
DocumentDB will work well for us. It is used in content
management systems. Hence if you are writing a blog, all of our
blog posts could fit neatly within documents in a MongoDB or a
DocumentDB database. Anything, where we have the semi-

static documents like you, sees here will be a good use case,
however,for this is not great for transactional systems where we
need to track lots of small transactions; however, if you are
storing data that you want to be more structured than a flat
storage system like S3. It would be best to index it to return
specific things based on the contents of that data.

Figure 3-26: AWS DocumentDB Use Cases

Serverless Options
Introduction
Serverless is a means of offering backend services as needed. Users may
use a serverless provider to build and publish code without worrying
about the underlying infrastructure. Because the service is auto-scaling,
a firm that obtains backend services from a serverless vendor is charged
depending on their calculations and does not have to reserve and pay
for a predetermined amount of bandwidth or number of servers. It

should be noted that, despite the term, actual servers are still utilized,
but developers are not required to be aware of them.

To start, we have S3 select, which is just an API call that lets us make
selects against data in S3 buckets. We have Athena, which is more of a
fully relational database management system that S3 backs. We have
DynamoDB, a key-value plus a fully managed serverless database. We
also have Aurora serverless, which leverages the architecture of Aurora
to treat our database as though it is serverless. Serverless means that we
do not need to administrate any servers. Hence there are still servers
behind all of these services. We are just not going to be building them
at all.

Figure 3-27: Database Serverless Options

S3 Select
Using simple SQL expressions, S3 Select allows apps to get only a subset
of data from an object. You may drastically improve speed by retrieving
only the data required by your application using S3 Select. In many
circumstances, you might expect to see a 400% improvement.

Figure 3-28: S3 vs. S3 Select

Assume you are a developer at a huge retailer that needs to evaluate
weekly sales data from a single location, but the data for all 200 stores is
stored in a fresh GZIP CSV every day. Instead of accessing the full
object, S3 Select allows you to use a simple SQL phrase to return only
the data from the store you are interested in. To acquire the data you
wanted without S3 Select, you would have to download, decompress,
and analyze the complete CSV. It implies that you are dealing with
orders of magnitude fewer data, which increases the performance of
your underlying applications.

S3 Select is available in the AWS CLI and SDKs C++, Go, Java,
Javascript, .net, PHP, Python, and Ruby. It can read data from CSV or
comma, separated value, JSON or JavaScript, object notation, formatted
data, or Parquet. Hence Parquet formatted data is accepted by S3 select.
The data must be encoded in UTF-8. Gzip and Bzip two compression is
available for CSV and JSON, and Parquet is a fairly complex data
format. Hence, it only supports columnar compression within that

format. It is fairly interesting if you are into data formats. Encryption is
supported on the server-side. Client-side encryption would not work for
S3 Select, and if you are doing a select from the AWS CLI, you use the
S3 API command set because you are asking S3 to do something you are
not moving or managing data. Hence this is a quick example of what
that would look like if you had a das_data CSV. You wanted to select
everything out of that object that needs to provide an expression and
expression type, and then the inputs realization and the output
serialization that you want. You can change the output serialization
from one to the other if you wish to.

Figure 3-29: S3 Select

EXAM TIP: S3 Select is available in the AWS CLI and SDKs C++,
GO, Java, Javascript, .net, PHP, Python, and Ruby. It can read data
from CSV or comma, separated value, JSON or JavaScript, object
notation, formatted data, or Parquet.

Athena

Amazon Athena is an interactive query service that allows you to use
conventional SQL to evaluate data directly in Amazon Simple Storage
Service (Amazon S3). With a few clicks in the AWS Management
Console, you can aim Athena at your Amazon S3 data and start running
ad-hoc searches with conventional SQL to obtain results in seconds.

Because Athena is serverless, there is no infrastructure to install or
administer. You just pay for the queries you conduct. Athena
intelligently scales searches in parallel, resulting in rapid responses
even with big datasets and sophisticated questions.

Athena aids you in analyzing unstructured, semi-structured, or
structured data stored on Amazon S3. Examples are CSV, JSON, and
columnar data formats such as Apache Parquet and Apache ORC. You
can use Athena to conduct ad-hoc ANSI SQL queries without
aggregating or loading the data into Athena.

For quick data visualization, Athena works with Amazon QuickSight.
Athena may produce reports or study data using business intelligence
tools or SQL clients linked through a JDBC or an ODBC driver.

Athena works with the AWS Glue Data Catalog, which provides a
permanent metadata repository on Amazon S3 for your data. It lets you
construct tables and query data in Athena based on a centralized
metadata store available throughout your Amazon Web Services
account and connected with AWS Glue's ETL and data discovery
functionalities.

Athena is very much like S3 Select but with more features. Hence, it is a
SQL interface for data stored in S3. It is a full service all into itself. You
do not access it through S3 or the S3 API. It has its API running Presto

under the hood, and it accepts CSV, JSON ORC, or optimized row
columnar Parquet. It is Parquet Avro, and you will notice that ORC and
Avro are additional data formats that Athena can read that S3 select
cannot, depending on the type and structure of your data. If you want
data to make more complex queries against or format differently than
you would use for S3 Select, Athena will fit into that space. Athena has
some very useful service integrations. When you are looking at the back
end of our data analytics workflow, it will integrate well with
QuickSight, and it also can be cataloged with Glue, which lets us do
some fairly complex ETL work with Athena of our data sources.

Figure 2-30: AWS Athena

EXAM TIP: Amazon Athena is an interactive query service that
allows you to use conventional SQL to evaluate data directly in
Amazon Simple Storage Service (Amazon S3).

DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service that
delivers quick and predictable performance while seamless scaling. You
can offload the administrative requirements of running and growing a
distributed database using DynamoDB, so you do not have to worry
about hardware provisioning, setup, configuration, replication, software
patching, or cluster scalability. DynamoDB also supports encryption at
rest, removing the operational load and complexity associated with
securing sensitive data.

You may use DynamoDB to design database tables that store and
retrieve any quantity of data while also serving any degree of request
volume. You may increase or decrease the throughput capacity of your
tables without experiencing downtime or performance reduction. The
AWS Management Console may be used to track resource use and
performance data.

DynamoDB allows for on-demand backups. It enables you to build
comprehensive backups of your tables for long-term retention and
archival to meet regulatory compliance requirements.

For your Amazon DynamoDB tables, you may make on-demand
backups and allow point-in-time recovery. You may restore a table to
any point in time during the previous 35 days using point-in-time
recovery. Point-in-time recovery safeguards your tables against
erroneous write or deletes operations.

DynamoDB allows you to automatically remove expired items from
tables to save storage use and the expense of maintaining data that is
no longer relevant.

Hence DynamoDB is a key-value and document store. The table looks

fairly similar to this in the console, where you will have attributes and
keys for those attributes that are accessible via an API. If you store
documents and want to access their values, you could just store flat
JSON in it through the API. However, you would not be able to make
queries against our JSON object’s sub-attribute. Hence, you can use a
map to see an M here in the metadata. That is for the map, not
metadata that specifies the data format. Therefore, you are making a
map. You then have a use cases key here, and then you have a list data
format designator, which will contain strings. Hence our use cases are
content management, metadata store, user profiles, transaction logging,
and things like that. It is really good for OLTP use cases, and it is a bit
more flexible in terms of the rapidness of transactions than, say,
DocumentDB or MongoDB. DynamoDB has several data formats
available for the values in its fields. Hence, it does have local secondary
indexes, which adds a secondary key to the table. You can add a global
secondary index, like a second key structure for the table. Hence you
would query against that global secondary index the same way you
would against the primary index. Another very useful feature stream,
which is a stream of the data coming into the table, any changes,
deletions, writes, subsequently that you can use to trigger Lambda
functions and perform secondary functions based on the activity on our
table.

DynamoDB has several other features, but these are the ones that are
good to know about. It has a couple of closely integrated services, Dax,
a DynamoDB accelerator, a read cache for DynamoDB, and fairly
granular IAM integration. You can get down to the single record level
for IAM access, and as mentioned with streams, Lambda is fairly closely

integrated with DynamoDB. Then you have a fun little record here that
lets you decode that this is a byte data field, which for DynamoDB is
going to be base 64 encoded.

Figure 3-31: AWS DynamoDB

EXAM TIP: Amazon DynamoDB is a fully managed NoSQL database
service that delivers quick and predictable performance while
seamless scaling. DynamoDB allows you to automatically remove
expired items from tables to save storage use and the expense of
maintaining data that is no longer relevant.

Aurora
Amazon Aurora (Aurora) is a relational database engine that is fully
managed and compatible with MySQL and PostgreSQL. MySQL and
PostgreSQL combine the performance and dependability of high-end
commercial databases with the simplicity and low cost of open-source
databases. The code, tools, and applications that you are now using
with your existing MySQL and PostgreSQL databases may be utilized

with Aurora. Aurora may give up to five times the performance of
MySQL and three times the throughput of PostgreSQL in specific
workloads without needing modifications to the bulk of your existing
applications.

Aurora is equipped with a high-performance storage subsystem. Its
MySQL and PostgreSQL database engines have been tailored to use fast
distributed storage. As needed, the underlying storage expands
automatically. Aurora also automates and standardizes database
clustering and replication, two of the most difficult parts of database
deployment and maintenance. An Aurora cluster volume can be up to
128 terabytes in size (TiB).

Aurora is a managed database service provided by Amazon Relational
Database Service (Amazon RDS). Amazon RDS is a cloud-based online
service that simplifies the setup, administration, and scale the relational
databases.

The following comparisons show how Aurora compares to the typical
MySQL and PostgreSQL engines offered in Amazon RDS:

When configuring new database servers with Amazon RDS, you
select Aurora as a DB engine option
Aurora uses the well-known Amazon Relational Database
Service (Amazon RDS) functionalities for management and
administration. Aurora manages typical database processes such
as provisioning, patching, backup, recovery, failure detection,
and repair using the Amazon RDS AWS Management Console
interface, AWS CLI commands, and API operations
Instead of individual database instances, Aurora administration
activities often include whole clusters of database servers that
are synchronized via replication. The automated clustering,
replication, and storage allocation make setting up, operating,

and scaling your biggest MySQL and PostgreSQL systems
straightforward and cost-effective
You may import data from Amazon RDS for MySQL and
Amazon RDS for PostgreSQL into Aurora by taking and
restoring snapshots or using one-way duplication. You may
convert your current Amazon RDS for MySQL and Amazon RDS
for PostgreSQL apps to Aurora using push-button conversion
tools

EXAM TIP: Aurora is equipped with a high-performance storage
subsystem. It is MySQL, and PostgreSQL database engines have been
tailored to use fast distributed storage.

Aurora Serverless
Amazon Aurora Serverless v1 (Amazon Aurora Serverless version 1) is a
configuration for on-demand autoscaling in Amazon Aurora. An Aurora
Serverless DB cluster is a database cluster that dynamically scales
processing capacity based on the needs of your application. In contrast,
Aurora supplied DB clusters require manual capacity management.
Aurora Serverless v1 is a simple, low-cost choice for occasional,
intermittent, or unexpected workloads. It saves money since it starts up
automatically, boosts processing capacity to match the needs of your
application, and shuts down when not in use.

The same high-capacity, distributed, Aurora Serverless v1 clusters use
highly available storage volume by deployed DB clusters. An Aurora
Serverless v1 cluster's cluster volume is always encrypted. You may
select the encryption key, but you cannot turn off encryption. You can
currently conduct the same activities on an Aurora Serverless v1 that
you do on encrypted snapshots.

We have Aurora serverless. Aurora Serverless can run a MySQL
compatible or PostgreSQL compatible version. A proxy in front of our
database handles our incoming connections. There are compute
instances between that proxy and a storage cluster. As we use that
storage, it will add ten gibibyte chunks as you go along.

Hence, Aurora has no hard IOPS limit because the data is stored in
these chunks, individual nodes within the storage cluster. Therefore,
each one of those would be very difficult. It would not be easy to exceed
the IOPS capability of these storage nodes. Hence, one of the best
features of any Aurora flavor is that the storage engine provides this
unlimited pool of IOPS. You pay for those IOPS, but you will not have
production down events because someone provisioned a GP2 volume
for a production system. As mentioned, the storage and compute are
connected. Still, the compute node can go into a zero-allocation state,
which is why it should be used for infrequently accessing data but say,
our user comes along and requests a connection. It will go to that
compute node and provision the compute node standing by it. You will
load our configuration onto it, and now you can make queries against
our database. Thus, you may have noticed the work capacity unit. It
allows the instance to scale up and down to demand against the
database. Hence MySQL can go from 1 to 256 Aurora capacity units, and
PostgreSQL can go from 2 to 384 or our capacity units.

Figure 3-32: AWS Aurora Serverless

EXAM TIP: Aurora Serverless DB cluster is a database cluster that
dynamically scales processing capacity based on the needs of your
application. In contrast, Aurora supplied DB clusters require manual
capacity management.

Lab 3-01: Programmatically Utilizing S3 Select
Introduction
AWS Simple Storage Service (S3)

Amazon S3 is a type of object storage that allows you to store and
recover any quantity of data from any location. It is a low-cost storage
solution with business resilience, reliability, efficiency, privacy, and
infinite expansion.

Amazon S3 offers a straightforward web service interface for storing and
retrieving any amount of data from any location at any time. You may
quickly create projects that integrate cloud-native storage using this

service. Because Amazon S3 is easily customizable and you only pay for
what you use, you can start small and scale up as needed without
sacrificing performance or dependability.

Amazon S3 is also built to be highly adaptable. Instead of finding out
how to store their data, Amazon S3 allows developers to focus on
innovation. Build a simple FTP system or a complex web application
like the Amazon.com retail website; read the same piece of data a
million times or only for emergency disaster recovery; store whatever
type and amount of data you desire.

AWS S3 Select

S3 Select is an Amazon S3 feature that allows you to access a selection
of S3 object content rather than the complete object by using simple
SQL queries. SQL clauses such as SELECT and WHERE can get data
from objects saved in CSV, JSON, or Apache Parquet formats. It also
supports GZIP or BZIP2 compressed objects (CSV and JSON files) and
server-side encrypted data.

AWS Lambda

AWS Lambda allows you to run code without creating or managing
servers. There is no charge when your code is not executing; you only
pay for the compute time you use. You can run code for nearly any
application or backend service with Lambda, and you do not have to
worry about administration. Upload your code, and Lambda will handle
everything necessary to run and grow it with high availability. You may
configure your code to be automatically triggered by other AWS
services, or you can access it directly from any computer or smartphone
app.

AWS API Gateway

Amazon API Gateway is a fully managed service that allows developers
to publish easily, maintain, monitor, and protect APIs of any size. You
can develop an API that serves as a "front door" for apps to access data,
business logic, or functionality from your backend services, such as
those operating on your server Amazon Elastic Compute Cloud
(Amazon EC2), Amazon Elastic Container Service (Amazon ECS), or
AWS Elastic Beanstalk, code running on AWS Lambda, or any web
application, with a few clicks in the AWS Management Console.
Accepting and processing hundreds of thousands of concurrent API
calls and traffic management, authorization, access control,
monitoring, and API version management are all supported by Amazon
API Gateway. There are no minimum fees or initial charges with
Amazon API Gateway. You only pay for the API requests you receive
and the amount of data transmitted out when using HTTP APIs and
REST APIs. You only pay for messages delivered and received, as well as
the time a user/device is connected to the WebSocket API.

Problem
Assume you are a Data Analyst in a company. Your company's
development team is working on a proof of concept for a directory of all
of the company's workers. They have a pretty simple web application
running, but they want to add a filtering function. So how can you
automate this task and add a data filtering feature to the website?

Solution
The solution is simple to design a filtering pipeline using AWS Lambda
functions and API Gateway. The main service you use to create a

database is on S3. Then, you use S3 Select, an Amazon S3 feature that
allows you to access a selection of S3 object content rather than the
complete object by using simple SQL queries.

Note: Before starting the lab, make sure to create an S3 bucket and
upload the related files used in this lab, as is provided in the following
Github link:

https://github.com/linuxacademy/Content-AWS-Certified-Data-
Analytics---
Speciality/tree/master/Lab_Assets/programmatically_utilizing_s3_select

Also, create lambda functions as this is used in this lab environment.
Making all these resources is mentioned in the IPSpecialist AWS
Certified Solutions Architect – Associate (SAA-C02) coursebook.

Figure 3-33: Programmatically Utilizing S3 Select

https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---Speciality/tree/master/Lab_Assets/programmatically_utilizing_s3_select

Step 1: Reviewing S3 Bucket

1. Log in to the AWS Console.
2. Click on the Services.

3. Select S3 from the Storage.

4. You will create two buckets—the random_users and
random_users_data.

5. Click on the random_users bucket.

6. Review the objects.

7. Click on the random_users_data bucket.

8. Click on the users_1.json file.

9. Click on the Download button.

10. Open the user_1.json file. Review the user data.

11. Copy the random-users_data bucket.

Step 2: Modifying Lambda Function

1. Click on the Services.

2. Select the Lambda from the Compute.

3. Click on the Users_Primary Lambda function.

4. Click on the function.py file.

5. Paste the random-users-data-<Account_Number> bucket name on line number 5.

6. Click on the Deploy button to save the changes.

7. Open a new tab of the browser. Type URL random-users-<Account_Number>.s3-website-us-
east-1.amazonaws.com. Then, press Enter on your keyboard.

8. After a few seconds, you will have the data of random people on the web app.

9. But you cannot filter out the data in this web app right now.
Users_Primary Lambda function dashboard.

10. Modify the filter_data function in the code.

11. Copy the code from the provided Github link:
https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---

https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---Speciality/blob/master/Lab_Assets/programmatically_utilizing_s3_select/lambda/function_solved.py

Speciality/blob/master/Lab_Assets/programmatically_utilizing_s3_select/lambda/function_solved.py

12. Paste the code in the code editor.

13. Online number 6, copy and paste the random-users-data-<Account_Number>

14. Online number 69, copy and paste the random-users-data-<Account_Number>

15. Click on the Deploy button to save the changes.

16. Go back to the web app tab. Click on the Refresh button.

17. In the Age text bar, type 52.

18. Click on the Filter button.

19. You will see the web app is now showing the data of the Age: 52

20. In the Country text bar, type Spain.

21. Click on the Filter button.

22. You will see the web app is now showing the data of the Country: Spain

23. Hence, you can create data filtering web app using S3 Select.

Note: After completing the lab, delete all the AWS services used in this lab.
get charged.

Mind Map

Figure 3-34: Mind Map Databases in AWS

Practice Questions

1. A database engine, sometimes known as ________________.

A. Storage Device

B. Storage Software

C. Storage Engine

D. Storage Machine

2. Which of the following is a collection of data objects that
have specified relationships and can be easily retrieved?

A. Relational Database

B. Non-relational Database

C. Row Database

D. Columnar Database

3. Which database arranges data by the record and keeps all
data related with a record in memory next to each other?

A. Relational Database

B. Non-relational Database

C. Row Database

D. Columnar Database

4. Which of the following database management systems stores
data in columns rather than rows?

A. Relational Database

B. Non-relational Database

C. Row Database

D. Columnar Database

5. Which databases differ from traditional relational databases
because they are stored in a non-tabular format?

A. Relational Database

B. Non-relational Database

C. Row Database

D. Columnar Database

6. Which AWS resource-managed graph database service
simplifies the design and operation of applications that deal
with vast linked datasets?

A. Amazon RDS

B. Amazon Neptune

C. Amazon DocumentDB

D. Amazon Aurora

7. Which AWS database service is a document store engine?

A. Amazon RDS

B. Amazon Neptune

C. Amazon DocumentDB

D. Amazon Aurora

8. Which of the following is a data structure consisting of a
finite number of nodes and edges that link them?

A. Graph Structure

B. JSON Structure

C. Document Structure

D. Array Structure

9. The row database is excellent for which purpose?

A. Social Media

B. OLAB

C. Cyber Security

D. OLTP

10. The columnar database engines are good for which purpose?

A. Social Media

B. OLAB

C. Cyber Security

D. OLTP

11. Which of the following allows apps to get only a subset of

data from an object?

A. S3 Select

B. Athena

C. DynamoDB

D. Aurora Serverless

12. Which interactive query service allows you to use
conventional SQL to evaluate data directly in AWS S3?

A. S3 Select

B. Athena

C. DynamoDB

D. Aurora Serverless

13. Which fully managed NoSQL database engine service delivers
quick and predictable performance while seamless scaling?

A. S3 Select

B. Athena

C. DynamoDB

D. Aurora Serverless

14. Which is a relational database engine fully managed and
compatible with MySQL and PostgreSQL?

A. Aurora

B. Athena

C. Auto-Scaling

D. AppFlow

15. Which is a DB cluster that dynamically scales processing
capacity based on the needs of your application?

A. Aurora

B. Athena

C. Auto-Scaling

D. AppFlow

CHAPTER 04: COLLECTING
STREAMING DATA

Introduction to Collecting Streaming Data
The streaming data makes up a mass amount of data collected, so it is
important to understand what it is and what are the different ways you
can collect, process, and store it within AWS. Streaming data is new
data, and it plays a big role in actionable decisions that can be made
with that data.

Let us look at this chart from Forrester's research; it describes how data
loses value over time. On the right-hand side, you can see historical
data that is normally stored in a data warehousing solution or a data
lake. If you move further left along with this graph, you start to see
more actionable data. This data is captured in real-time, within seconds
or minutes. It is where all the interesting data exists.

Figure 4-01: Data Losses Value Quickly Over Time

Steps for Success

If you look at our steps for success during this chapter, you will cover
several AWS services that allow us to capture streaming and interesting
data. You will learn about collecting, processing, transforming, and
storing streaming data using services like Amazon Kinesis and Amazon
Managed Streaming for Kafka.

Figure 4-02: Introduction to Collecting Streaming Data

Kinesis Family
Data Collection
The practice of gathering, measuring, and evaluating correct research
insights using established procedures is data collection. Based on the
evidence gathered, a researcher can assess their hypothesis. Depending
on the information requested, the approach to data gathering differs for
different topics of research. Regardless of the subject of study, data

gathering is the first and most significant stage in most situations.

The systematic process of gathering and measuring information from
many sources to create a full and accurate picture of a subject is known
as data collection. Data collecting allows a person or organization to
answer pertinent questions, assess results, and forecast future
probability and trends.

Data collection’s most critical objective is to ensure that information-
rich and reliable data is collected for statistical analysis so that data-
driven decisions can be made.

Maintaining research integrity, making educated business choices, and
guaranteeing quality assurance all need accurate data collection. Data
from mobile applications, website visits, loyalty programs, and online
surveys, for example, might be used to understand more about
customers in retail transactions. In a server consolidation project, data
collection would include a physical inventory of all servers and an
accurate description of what is installed on each server, the operating
system, middleware, and the server-supported application or database

Data Collection Methods
Surveys, interviews, and focus groups are the most common methods
for gathering information. Corporations may now collect data from
mobile devices, website traffic, server activity, and other relevant
sources using Web and analytics technologies depending on the
project.

Big Data Collection
It is based on collecting and then mining large amounts of data for
information. Big data refers to massive volumes of organized, semi-

structured, and unstructured data acquired by businesses. New
approaches for collecting and analyzing data have emerged because it
takes a lot of time and money to load big data into a traditional
relational database for analysis. In a data lake, raw data with extra
information is aggregated. Machine learning and artificial intelligence
systems then employ complicated algorithms to search for repeating
patterns.

Hence, you know that data comes from many different places, and most
of the time, we can capture our data as static or streaming data. Static
data is the data that is not changing or that you download and then do
something with. Most of the in-house datasets that your organization
has collected and stored in a data warehouse or a data lake are
considered static data. This data has been collected over many months
or many years. As a Machine Learning Specialist, it is your job to do
something with that data. Streaming data is a bit different because
streaming data is constantly being updated or continuously being
added to during the data collection process.

Streaming Data
Streaming data is generated continuously by thousands of data sources.
These are typically sent in small data records simultaneously, think in
the order of kilobytes. For example, think about sensors in vehicles or
industrial equipment that you might see in some factory or farming
machinery. These sensors send data to streaming applications; these
applications monitor performance, detect any potential defects in
advance, or even place an order for spare parts. When defects or any
type of anomaly is detected within the equipment it is running on; it
prevents equipment downtime. Another example is a financial

institution that tracks changes in the stock market in real-time. It then
computes value at risk and rebalances portfolios automatically
depending on stock price fluctuations.

Another example is a solar power company that maintains power
throughput for its customers or pays penalties. Hence, it implements a
streaming data application that monitors all of its panels in the field. It
schedules service in real-time, thereby minimizing the periods of low
throughput for each panel and the associated penalty payouts. Another
example is a media publisher that streams billions of clickstream
records from online partners, social media websites, or e-commerce
websites. It aggregates and enriches the data depending on the users'
demographics using those applications. It can optimize the content
placed on its site to deliver a more relevant and better experience for its
audience or its users.

A final example is an online gaming company that collects streaming
data about the players playing the game interactively or in real-time. It
feeds that data into the gaming platform itself and then analyzes that
data in real-time. It also offers incentives or another type of dynamic
experience to help engage the players more or to help them further
enjoy the video game.

Figure 4-03: Different Data Streaming Platforms

Collecting, transforming, processing, and making decisions about data
in real-time, in seconds or minutes, is very important.

Figure 4-04: Data Losses Values Quickly Over Time

We have our streaming data on our left-hand side through these
various icons:

Figure 4-05: Which Service to Use for Data Streaming

There are several ways to get streaming data into AWS. When getting
streaming data into AWS, you need to think about the Kinesis service,
which will be important to understand and utilize for our streaming
data applications.

Figure 4-06: Data Streaming on AWS Kinesis

AWS Kinesis Family
The AWS Kinesis family is not just one service but a family of services.
Kinesis offers several different services that help you get your streaming
data into AWS and build robust applications around streaming data.
The first service is the Kinesis data stream.

Kinesis data stream allows us to collect and process large streams of
data records in real-time. It is the most important service when it
comes to Kinesis services. The next Kinesis service is Kinesis Data
Firehose. Kinesis Data Firehose is our delivery stream, which allows us
to deliver our streaming data to various data sources, such as Amazon
S3, Redshift, Elasticsearch, or Splunk. The next Kinesis service is Kinesis
video streams that allow us to stream live videos from devices to the
AWS cloud, and you can build real-time applications around these
video streams. Finally, we have Kinesis data analytics. It is what you can
use to process and analyze streaming data using standard SQL queries.
Hence, you can essentially run SQL queries in real-time on streaming
data.

Thus, Kinesis Data Stream, Kinesis Data Firehose, Kinesis Video
Streams, and Kinesis Data Analytics are the four services that make up
the Kinesis family.

Figure 4-07: AWS Kinesis Family

Kinesis Data Streams
Introduction
One of the benefits of using Kinesis Data Stream is aggregating real-
time data and then loading it into some data warehousing solution like
Redshift or some MapReduce cluster like EMR. Kinesis Data Streams
are also durable and elastic, meaning that you would not lose our data
records. You would not lose our streaming data, and it scales up or
down depending on the number of records coming into our stream. It
means that you can get all the benefits of a managed streaming service
rather than having to host it on EC2 instances ourselves. You want to
take advantage of managed services wherever you can, which is an
integral part of collecting streaming data within AWS. You can also
have parallel applications reading from the stream. Hence, you can
perform different functions on that data. It is one of the significant
differences between Kinesis and other queuing services.

We will look at some of the critical components and the different parts
that allow us to use Kinesis Data Streams. First, you have to have some
data producers. These are the applications that are producing streaming
data. For instance, they could be application log files, social media
streams, real-time user interactions from video games, IoT devices, or
they could even be EC2 instances or traditional servers on-premise.
They could be mobile clients or clickstream data from users interacting
with an online website or application. Hence, anything that produces
streaming data or anything that makes data you can collect in real-time
is going to be our data producer. You can set up a Kinesis stream and
push that data to the Kinesis string. The way in which data is

aggregated and captured is through shards.

Shards are essentially the packaging mechanism that allows us to
aggregate our data and send it into AWS. You can have one shard, two
shards, three shards, or you can have up to n shards. The default limit is
500 shards, but you can submit a ticket and increase this limit if you
need to.

These shards act as packaging mechanisms that take our data, package
it, and ship it off to the consumers or to the applications consuming the
data. Hence, once you start collecting our streaming data into our
shards, some data consumers who process the data consume that data.
You can think about data consumers as being any application or
software that processes or ingests the data. Hence, we can think about
EC2 instances. They can be the Lambda function, other Kinesis family
services like Kinesis Data Analytics and Kinesis Data Firehose, or they
can also be EMR. These data consumers can do a multitude of different
things. They can process the data, analyze the data, create some real-
time dashboards, store it off, or perform some type of analysis with that
data.

With Kinesis Data Streams, you are not required to store that data
anywhere. Hence, you could just run some analytics on it and then get
rid of it. You do not have to store it, but you will need to store that off
into a data lake or some data warehousing solution in most cases. You
can use various methods to get that data and then store it off to process
it later or just add it to our historical data sets. You could store the data
into resources like S3 for data lakes, DynamoDB. Also, you can keep it
into Redshift for data warehousing analysis or create dashboards using
business intelligence tools.

Figure 4-08: Kinesis Data Stream

EXAM TIP: Know what each service is and how it
processes/handles streaming data.

Working with Kinesis Data Streams
Kinesis Data Streams may be used to collect and aggregate data in real-
time. IT infrastructure log data, application logs, social media, market
data feeds, and online clickstream data are some examples of the data
types that may be employed. Because the data intake and processing
are both done in real-time, the processing is generally minimal.

The following are some examples of how Kinesis Data Streams can be
used:

1. Accelerated log and data feed intake and processing:

Data can be immediately sent into a stream by producers. For example,
push system and application logs will be ready for analysis in seconds. If

the front-end or application server dies, the log data will not be lost.
Kinesis Data Streams provide quicker data feed intake because you do
not batch the data on the servers before submitting it for input.

2. Real-time metrics and reporting:

Data gathered via Kinesis Data Streams may be used for real-time data
analysis and reporting. Instead of waiting for batches of data to arrive,
your data-processing application might work on metrics and reporting
for system and application logs as they come.

3. Real-time data analytics:

The strength of parallel processing is combined with the value of real-
time data in this way. For example, utilizing many Kinesis Data Streams
applications operating in parallel, process website clickstreams in real-
time, and then assesses site usability engagement.

4. Complex stream processing:

Kinesis Data Stream applications and data streams may be turned into
Directed Acyclic Graphs (DAGs). It usually entails combining data from
many Kinesis Data Stream applications into a single stream for later
processing by another Kinesis Data Stream application.

Benefits of Using Kinesis Data Streams
Although Kinesis Data Streams may be used to tackle a wide range of
streaming data issues, one frequent use is real-time data aggregation. It
is loading the aggregate data into a data warehouse or map-reduce
cluster.

Kinesis data streams are used to store data, ensuring its longevity and
flexibility. The time it takes for a record to be put into the stream and

for it to be retrieved (put-to-get latency) is generally less than one
second. To put it another way, a Kinesis Data Stream application may
begin consuming data from the stream practically as soon as it is added.
Kinesis Data Stream's managed service relieves you of the operational
load of setting up and maintaining a data intake pipeline. You can make
map-reduce applications that stream data. Kinesis Data Stream’
elasticity allows you to scale the stream up or down as needed, ensuring
that you never lose data records before they expire.

Multiple Kinesis Data Stream applications can ingest data from a
stream, allowing for parallel and different activities such as archiving
and processing. Two applications, for example, can read data from the
same stream. The first application updates an Amazon DynamoDB
table with ongoing aggregates, and the second compresses and archives
data to a data repository like Amazon Simple Storage Service (Amazon
S3). A dashboard reads the DynamoDB database with ongoing
aggregates for up-to-the-minute reporting.

The Kinesis Client Library enables fault-tolerant data consumption
from streams and offers scalability support for Kinesis Data Stream
applications.

Shard
Shards are a container that holds our information shipped off to
consumers. Let us assume that you have a single shard. You can see this
shard has two data records; each one of these data records consists of a
partition key, a sequence ID, the data, and the actual data you want to
ship off to consumers. The partition key is going to be the same for all
the records within a shard. The sequence number will be in the order in

which the shard received the record, and that will be our data. Each
shard consists of a sequence of data records. Here, you have two, which
can be ingested at 1000 records per second. The actual data payload per
record can be up to one megabyte.

In most cases, you will only have a few kilobytes of information within
your payload, but it can be up to one megabyte. One shard can process
one megabyte per second of input data. If it can process two megabytes
per second of output data, it means that a consumer can consume our
data faster than you can put data into the shard. This would be an
example of a single shard.

Let us take a look at what two shards would look like. Assume that you
have two shards, and with two shards, you can ingest data up to 2000
records per second. Thus, you just double the number of records that
can be consumed per second. This brings up an essential key feature;
scaling up our shards is how you scale Kinesis streams. Hence, if you
have more records input into our Kinesis streams and more user
activity, you need to scale up the number of shards you are using. Like
in our single shard example, the data payload per record can be up to
one megabyte. So no matter what, you can have up to one megabyte of
data per record. The gray squares represent our records. Thus, you
double the amount of input data records you can read and the amount
of output data records you can read with two shards. Hence, in this
case, you can have up to two megabytes per second of input data and
four megabytes per second of output data. If our input data exceeds
some of these limits, maybe Kinesis Streams is not a good solution.
However, in most cases, Kinesis Data Streams will be one of the go-to
services for streaming data.

Figure 4-09: Shards

For example, compare a shard to objects in real-world trains, and think
about the entire train. The train ID, or let us assume the train's name,
will be the partition key that is going to be the same for all of the cars.
Each train car will be associated with what you call a sequence number
in a shard. Hence, each train car will have a different sequence number.
The passengers will be the actual data you are shipping off to our
consumers or our input data. Hence, those are the people that are on
the train.

Figure 4-10: Sharding Train Example

EXAM TIP: Understand what shards are, a data record, and how
long a shard should be kept.

Processing & Storage
A shard is temporary data storage. Data records are stored for 24 hours
by default and can be extended up to 365 days. By default, the data
retention period is 24 hours. You can raise the data retention period to
seven days by enabling extended data retention. You can increase it
even further by allowing long-term data retention to have the data
persist in the shard for up to 365 days. You can do this by using the
increased stream retention period operation. You can decrease it by
using the reduced stream retention period operation. Hence, going
back to our train example, passengers will be booted from the train
every 24 hours, but some rules may differ for some trains. It is the

retention period, so some passengers may be allowed to stay for up to
365 days.

Interacting with Kinesis Data Stream
There are a few different ways to interact with Kinesis Data Streams:

1. Kinesis Producer Library (KPL):

An application that inserts user data into a Kinesis data stream is an
Amazon Kinesis Data Streams producer (also called data ingestion).
The Kinesis Producer Library (KPL) makes it easier for developers to
create producer applications by achieving high write throughput to a
Kinesis data stream.

2. Kinesis Client Library (KCL):

KCL takes care of many complicated duties connected with distributed
computing, allowing you to receive and process data from a Kinesis
data stream. Load balancing across numerous consumer application
instances, responding to consumer application instance failures,
checkpointing processed records, and responding to re-sharding are
examples of these. The KCL handles all of these subtasks, allowing you
to concentrate on implementing your unique record-processing logic.

The KCL is not the same as the Kinesis Data Streams APIs offered in the
AWS SDKs. The Kinesis Data Streams APIs assist you in managing
many elements of Kinesis Data Streams, such as establishing streams,
re-sharding, inserting and receiving information. The KCL adds a layer
of abstraction around all of these subtasks, allowing you to focus on the
particular data processing logic in your consumer application.

3. Kinesis Agent

The Kinesis Agent is a ready-to-use Java application that can be

deployed on a Linux-based server. It is an agent that monitors specific
files and continuously sends data to our Data Stream. Hence, you might
want to install this on web servers, log servers, or database servers.

Kinesis Agent is a Java software application that allows you to quickly
gather and transfer data to Kinesis Data Streams. The agent watches a
group of files in real-time and feeds new data to your stream. The agent
performs file rotation, checkpointing, and retries in the event of a
failure. It distributes all of your data in a dependable, fast, and
straightforward manner. It also emits Amazon CloudWatch metrics to
assist you in monitoring and troubleshooting the streaming operation.

By default, entries from each file are processed based on the newline
('n') character. On the other hand, the agent may be set to parse multi-
line entries.

The agent may be deployed on Linux-based web servers, log servers,
and database servers. Configure the agent after installing it by
providing the files to monitor and the data stream. Once set up, the
agent takes data from files and consistently feeds it to the stream.

4. Kinesis API (AWS SDK):

It is used to process data from the Kinesis Data Stream. Once the data
is in Kinesis Data Streams, you can use Kinesis Client Library,
abbreviated as KCL, to directly interact with the Kinesis Producer
Library to consume. These libraries are used to abstract some of the
low-level commands you would have to use with the Kinesis API.
However, it is used for more low-level API operations and more manual
configurations. Hence, the interaction with Kinesis Data Stream is by
using the Kinesis API. With the Kinesis API, you can perform the same

actions that you can achieve with the Kinesis Producer Library or the
Kinesis Client Library. Hence, you can install the Kinesis Producer
Library on two EC2 Instances or integrate it directly into your Java
applications.

EXAM TIP: Know the difference between the KPL, KCL, and Kinesis
API.

KPL vs. Kinesis API
The Kinesis Producer Library provides a layer of abstraction when you
are ingesting the data. Thus, you have to manage stream creation with
the Kinesis API, things like resharding and getting records from the
Kinesis stream. It is kind of all automatically handled for us with the
Kinesis Producer Library. One benefit of using the API is that there are
no delays in processing. Under the hood, that Kinesis Producer Library
uses a Kinesis API. However, there might be some additional processing
delays that might occur with the Kinesis Producer Library. Hence, with
the Kinesis Producer Library, you have a higher packaging efficiency
when sending your data to your stream for better performance. With
the Kinesis Producer Library, you can only install it with the Java
wrapper. With the Kinesis API, you are only bound by the SDKs that
AWS offers, which provide a wide variety of SDKs to use.

Figure 4-11: KPL VS Kinesis API

Some key features between the Kinesis Producer Library and the
Kinesis API are mentioned below:

Features of KPL:
Provides a layer of abstraction dedicated to data intake
Retry system that is both automatic and adjustable
To achieve higher packing efficiency and better performance, additional processing
delays may occur
Java wrapper

Features of Kinesis API:
Low-level API calls (PutRecords and GetRecords)

Stream creations, re-sharding, and putting and getting records are manually handled

No delays in processing
Any AWS SDK

Kinesis Data Stream Use Cases
Following are some use cases of Kinesis data streams where you could
use Kinesis Data Streams, or where it would be a good option:

1. Process and evaluate logs immediately:

You can process and evaluate logs immediately. Imagine that you work
for an organization with SLA and downtime agreements with other

companies and shareholders for the application you are building. You
can continuously stream the logs from those applications, and you can
monitor those for any errors and respond to them accordingly. Paired
with other monitoring platforms, it could save your software from ever
being down. Example: Continuously analyze system and application
logs, and process them in seconds.

2. Real-time data analytics:

You could also run real-time analytics on things like clickstream data.
Imagine that you work for a company that sends out automated emails
and messages to the users who interact with the application more. You
can analyze that clickstream data, see what products they are looking
at, and see how they use the application or the e-commerce website.
You can process that clickstream data, recommend various items, and
send out automated coupons, emails, or deals to drive the customer to
make a purchase. You probably see this all the time as you interact
more with e-commerce style websites. The faster you can consume,
process, and do something with the data, the more value there will be.
Example: Run real-time analytics on clickstream data and process it
within seconds.

EXAM TIP: For a given scenario, know which streaming kinesis
service to use.

Lab 4-01: AWS Kinesis Data Stream
Introduction
Kinesis Data Streams

You may use Amazon Kinesis Data Streams to create custom

applications that process or analyze streaming data for specific
purposes. To an Amazon Kinesis data stream, you may constantly add
data from hundreds of thousands of sources, such as clickstreams,
application logs, and social media. Within seconds, your Amazon
Kinesis Applications will be able to read and analyze data from the
stream.
AWS CloudFormation

AWS CloudFormation is a tool that makes it simple for developers and
organizations to construct a collection of linked AWS Third-party
resources and then provision and manage them logically and
reasonably.

Developers may use a simple, declarative approach to deploy and
change compute, database, and many other resources, abstracting away
the complexities of individual resource APIs. AWS CloudFormation is
meant to make resource lifecycle management repeatable, predictable,
and safe, with features like automatic rollbacks, automated state
management, and resource management across accounts and regions.
Multiple ways to generate resources have recently been added,
including leveraging AWS CDK for writing in higher-level languages,
importing existing resources, and detecting configuration drift. A new
registry makes it easier to create custom types that inherit many of
CloudFormation's core functionalities.

Problem

Assume you work in an organization as a Data Analytics engineer. Your
organization has thousands of users interacting with the organization
application. The organization gives you a task to capture real-time data
about the users for a marketing campaign and monitor the captured

data in real-time. So, how can you automate this task?

Solution

The solution is using AWS services to automate your work. You can use
Kinesis Data Streams to generate, collect and monitor data. Another
helping service that you can use is AWS CloudFormation to create a
stack.

Before starting the lab, the Python script is used to collect the data. The
Python code is provided in the following Github link:
https://github.com/ACloudGuru-
Resources/Course_AWS_Certified_Machine_Learning/blob/master/Chapter3/put-
record-python-program.py. This Python script is integrated on
CloudFormation stack YAML file. In this lab, the only template is used
to create a stack and collect the data.

Figure 4-12: Python Script

https://github.com/ACloudGuru-Resources/Course_AWS_Certified_Machine_Learning/blob/master/Chapter3/put-record-python-program.py

Step 1: Create Kinesis Data Stream

1. Log in to the AWS Management Console.

2. Click on the Services.

3. Select the Kinesis from the Analytics.

4. Select the Kinesis Data Streams.

5. Click on the Create Data Stream button.

6. Give a name IPS-my-data-stream.

7. Now to calculate the number of shards, click on the Shard
Estimate.

8. Give the following values in Shard Calculator:

Average record size: 1 KB

Max records written: 5 per second

Number of consumer applications: 1

9. The result is ‘Estimated shards: 1

10. Set number of shards: 1

11. Click on the Create Data Stream button.

12. Hence, a Kinesis data stream is created.

Step 2: Create CloudFormation Stack

1. Click on the Services.

2. Select the CloudFormation from the Management & Governance

3. Click on the Create Stack button.

4. Select Template is ready.

5. Download a template file provided in the following Github link:
https://raw.githubusercontent.com/ACloudGuru-
Resources/Course_AWS_Certified_Machine_Learning/master/Chapter3/setup-
data-producer.yml.

https://raw.githubusercontent.com/ACloudGuru-Resources/Course_AWS_Certified_Machine_Learning/master/Chapter3/setup-data-producer.yml

6. Select the Upload a template file.

7. Click on the Choose file button.

8. Select the setup-data-producer.yml file. Then Click on the Open

9. Click on the Next button.

10. Give a stack name IPS-data-producer-stack.

11. Then give Kinesis data stream name: IPS-my-data-stream.

12. Click on the Next button.

13. Scroll down. Click on the Next button.

14. Scroll down. Click on the check box.

15. Then Click on the Create Stack button.

16. It will take a few minutes to create a stack. Once it is completed,
CloudFormation will create all the services and automatically start putting that
random user data into the Kinesis stream.

17. Hence, CloudFormation Stack work is completed.

18. Now go back to the Kinesis Data Stream dashboard, and then click on the
IPS-my-data-stream.

19. Click on the Monitoring tab.

20. You will see different graphs.

Kinesis Data Firehose
Introduction

Amazon Kinesis Data Firehose is a fully managed service that delivers
real-time streaming data to Amazon S3, Amazon Redshift, Amazon
OpenSearch Service (Amazon ES), Splunk, and any custom HTTP
endpoint or HTTP endpoints owned by supported third-party service
providers like Datadog, Dynatrace, LogicMonitor, MongoDB, New
Relic, and Sumo Log. Kinesis Data Firehose, Kinesis Data Streams,
Kinesis Video Streams, and Amazon Kinesis Data Analytics are part of
the Kinesis streaming data platform. You do not need to build
applications or manage resources using Kinesis Data Firehose. You set
up your data producers to transmit data to Kinesis Data Firehose, and
the data is delivered automatically to the destination you specify.
Kinesis Data Firehose may also be configured to alter data before
sending it.

Kinesis Firehose is similar to Kinesis Data Streams. You get data from
Data Producers, which can be things like application log files from EC2
instances or servers. Real-time clickstream data from an e-commerce
website could be things like IoT devices or sensors on manufacturing
devices. Any streaming data can be considered a data producer. With
Kinesis Data Firehose, you no longer have to worry about shards. Thus,
you can pre-process the data using AWS Lambda, which acts like an
ETL service right before you land data on some data store. With Kinesis
Data Firehose, you can land data onto RedShift, S3, Amazon Elastic
Search, and Splunk. Pre-processing the data with Lambda is optional,
so you do not have to use Lambda to pre-process the data, and you
could stream the data directly from Data Firehose to storage.

Firehose is going to be your delivery service for streaming data. You can
also take advantage of S3 Events, which allow us to call a Lambda

function when an event happens on an S3 bucket. For example, if you
have some streaming data that lands on an S3 bucket, you can create an
S3 event, which calls a Lambda function that pushes that data onto
DynamoDB. The different places where Kinesis Data Firehose can
output your data onto or deliver your data onto are RedShift, S3,
Splunk, and Amazon Elastic Search. It allows you to easily stream data
to a final data source or a final destination. Kinesis Data Streams
support shards and data retention, so if your processing tools fail,
Kinesis Data Streams will preserve the data and allow you to reprocess
it. With Kinesis Data Firehose, you do not have to worry about shards
since it is mainly used for streaming data directly into some storage or
data repository like S3. With Kinesis Data Streams, storing the data is
optional. You could just run some analytics on it and then get rid of the
data and never keep it. But with Kinesis Data Firehose, our end goal is
to store our data somewhere in AWS like S3.

Figure 4-13: Kinesis Firehose

Kinesis Data Firehose takes data and delivers it to some destination.
Using Kinesis Data Firehose, you can deliver data to S3, Redshift,
Elasticsearch, or Splunk instances.

EXAM TIP: Kinesis Data Firehose is a solution for streaming ETL. It
is the most convenient method for loading streaming data into data
warehouses and analytics tools. It is capable of capturing,
transforming, and loading streaming data into Amazon S3.

AWS Kinesis Firehose Key Concepts
Understanding the following ideas will help you get started with Kinesis
Data Firehose:

1. Kinesis Data Firehose Delivery Stream:

Kinesis Data Firehose is an underlying entity. You utilize Kinesis Data
Firehose by first generating a delivery stream and then delivering data
to it.

2. Record:

Your data producer provides the relevant data to a Kinesis Data
Firehose delivery stream. A record can be up to 1,000 KB in size.

3. Data Producer:

Records are sent to Kinesis Data Firehose delivery streams by
producers. A data producer is, for example, a web server that delivers
log data to a delivery stream. You can also set up your Kinesis Data
Firehose delivery stream to read data from an existing Kinesis data
stream and put it into destinations automatically.

4. Buffer Size & Buffer Interval:

Before sending data from Kinesis to destinations, Firehose buffers
incoming streaming data to a specific size or for a certain amount of
time. Buffer size is measured in megabytes, while buffer interval is
measured in seconds.

Kinesis Firehose Data Flow
Streaming data is transmitted to your Amazon S3 bucket for Amazon S3
destinations. You can optionally backup source data to another
Amazon S3 bucket if data transformation is enabled.

Figure 4-14: Kinesis Firehose Data Flow S3 Bucket

Streaming data is transmitted to your S3 bucket first for Amazon
Redshift destinations. Kinesis Data Firehose then sends the Amazon
Redshift COPY command to load data from your S3 bucket to your
Amazon Redshift cluster. You can optionally backup source data to
another Amazon S3 bucket if data transformation is enabled.

Figure 4-15: Kinesis Firehose Data Flow Redshift Cluster

Streaming data is sent to your Amazon ES cluster and may optionally
be backed up to your S3 bucket simultaneously for Amazon ES
destinations.

Figure 4-16: Kinesis Firehose Data Flow ElasticSearch Cluster

Streaming data is provided to Splunk for Splunk destinations, and it
may optionally be backed up to your S3 bucket simultaneously.

Figure 4-17: Kinesis Data Flow Splunk Instance

EXAM TIP: Understand how to get data from public or in-house
data sets and load it into AWS.

S3 Destination
The S3 as a destination is similar to Kinesis Data Streams. You have
data producers, which are the applications that are producing
streaming data. With Firehose, you can have Kinesis Data Streams, be a
data producer and send that data to Kinesis Data Firehose. However,
you have your data producers, and these data producers produce
records. But data records can be as large as a thousand kilobytes, and
once Data Firehose receives the records, it can then ship them off to S3.

You can just send a data producer via the Firehose to the bucket with
no modifications, transformations, or anything else that can be readily
accomplished with Kinesis Data Firehose. You can also intercept and
transform that record or do some type of manipulation on the
streaming data record, typically done with AWS Lambda. It integrates
directly with Kinesis Data Firehose to take that record and then

transform it before loading it onto the S3 bucket. You can also
introduce another step before you transform those records and store
the original records into a backup bucket. Then you can have your
other bucket with the transformed records be your destination bucket.
These are various ways that you can take data producers. You can take
our streaming data, feed it through Kinesis Data Firehose, transform it
if you want, and then ship it off to S3.

Figure 4-18: S3 Destination

EXAM TIP: Know the different ways to upload into S3 by using the
console, the S3 API, or the AWS CLI.

Redshift Destination
The next destination is Redshift. With Redshift, you have our data
producers, and you can send the data through Kinesis Data Firehose.

The data will always go to S3 first and then to Redshift. Hence, what
happens is that the streaming data is delivered to an S3 bucket first, and
then Firehose automatically issues the copy command to load the data
from S3 to Redshift. Anytime you load data into Redshift, it first gets
loaded into S3, and then it issues a copy command to load that data
from S3 to Redshift. You can do the same thing by intercepting records,
transforming them using AWS Lambda, loading them onto the S3
bucket, and then eventually using the copy command to load it onto
Redshift. You can also intercept here and transform the records as well.
Hence, you have a few different options to transform our records before
you load them onto Redshift. You can always have a backup bucket if
you want to and store off that data before you load onto Redshift or
before you transform those records. As a result, Redshift just knows
that it is the data warehousing solution that AWS offers.

Figure 4-19: Redshift Destination

Elasticsearch Destination

Similar to the other destinations, you have our data producers that go
through Kinesis Data Firehose. You can then load it into Elasticsearch
and transform the records before they load onto our Elasticsearch
cluster. Similarly, you can load the data before converting it onto
Elasticsearch into a backup bucket in the S3 bucket.

Figure 4-20: Elasticsearch Destination

Splunk Destination
The last destination is Splunk instances. Splunk is a way to aggregate
your log files from servers or applications to have a single place where
you can have all your log files aggregated. It is important to know that it
is a destination for Firehose. Hence, just like other destinations, you
have our data producers. It goes through Kinesis Data Firehose, where
you can load the data off into our Splunk instances and transform the
records as well. Similarly, you can load that data into an S3 bucket as a
backup before you transform it or load it into our Splunk instances.

Figure 4-21: Splunk Destination

Note: AWS recently added a new destination. This can be a generic
HTTP endpoint since this was added in mid to late 2020. Kinesis
Data Firehose is buffered and aggregated before it is shipped off as
the data is coming. It enables you to use a fully managed delivery
HTTP endpoint rather than building a custom application for data
delivery infrastructure. It also opens up the opportunity for key
integrations to services like DynamoDB, SNS, RDS, and API Gateway.

Buffer Size & Buffer Interval
You have all sorts of data producers. It might be clickstream, gaming,
IoT, or any streaming data. You can feed that through Kinesis Data
Firehose. You have data coming in aggregated, which then finally
shipped off to our destination. Hence, Amazon Kinesis Firehose buffers
the incoming streaming data to a certain size for a certain period before
delivering it to a destination. The buffer size for S3 as a destination

spans from 1 to 128 megabytes. In contrast, Elasticsearch ranges from 1
megabyte to 100 megabytes.

The data will be shipped off whenever the buffer sizes or buffer interval
is hit. Let us assume the buffer interval is hit. It will ship off the data to
its final destination, where the buffer interval is in seconds, ranging
from 60 seconds to 900 seconds. It is important to note that in
circumstances where the data delivery to the destination is falling
behind, the actual data is written to the stream. Firehose will raise the
buffer size dynamically to catch up, just to make sure that all the data is
delivered to its destination.

Figure 4-22: Buffer Size & Buffer Interval

Kinesis Firehose Use Cases
Following are some use cases of AWS Kinesis Firehose that can be used
in real life:

1. Stream & Store Data from Devices:

Kinesis Data Firehose allows us to stream and store data from all kinds
of devices easily. Think of IoT devices, embedded systems, and

customer applications where you can store it all off into some
destination, data lake, or other data warehousing solution. For example,
let us imagine you work for a software team that builds smart IoT
thermostats that go inside your home to help you control the
temperature of your lovely home. Your team has set up a Kinesis Data
Firehose to push important data into an S3 data Lake, such as
temperature readings, the user's region, and the location of where they
live. You can start to answer important questions like thermostat
changes during a particular part of the morning or a specific part of the
evening. For example, what is a typical household thermostat set to
during the winter months for a user in the Northern European
countries? Since Kinesis Data Firehose stores all of the important data
into an S3 data Lake, you can query that data and answer important
questions. It can help build better marketing strategies and suggestions
on energy-saving techniques for your customers in a similar region.
Example: Capturing important data from IoT devices, embedded
systems, and consumer applications to store it into a data lake.

2. Creating ETL Jobs on Streaming Data:

You can also create ETL streaming jobs on the data coming in through
Kinesis Data Firehose. Take the same smart thermostat reading data,
which you can transform it using an ETL job. You can store that data off
into different tables into a data warehousing solution like Redshift. It
means that various teams (let us assume the marketing team, the
engineering team, and the executive team) can run specific queries they
need to answer for their particular analytical questions. Hence, you no
longer have to sift through unstructured data that is in our Data Lake.
You can split out certain tables or permission and IAM policies to

different teams you have within your organization. Hence, they can run
their specific queries on your data analytics or your data warehousing
solution. Accordingly, Kinesis Data Firehose is a great tool to use if you
want to deliver that data to a Data Lake, a data warehouse, or store off
that data. For example, before data is stored in a data warehousing
system, ETL tasks run on streaming data.

Demo: Kinesis Data Firehose
Introduction
Kinesis Data Firehose

Kinesis Data Firehose is a solution for streaming ETL. It is the most
convenient method for loading streaming data into data storage and
analytics tools. It can collect, transform, and load streaming data into
Amazon S3, Amazon Redshift, Amazon Elasticsearch Service, and
Splunk. It enables near-real-time analytics with your existing business
intelligence tools and dashboards. It is a fully managed service that
scales automatically to meet your data flow and does not require any
ongoing management. It may also batch, compress, and encrypt data
before loading it, reducing storage requirements at the destination and
enhancing security.
Kinesis Data Streams

You may use Amazon Kinesis Data Streams to create custom
applications that process or analyze streaming data for specific
purposes. To an Amazon Kinesis data stream, you may constantly add
data from hundreds of thousands of sources, such as clickstreams,
application logs, and social media. Within seconds, your Amazon
Kinesis Applications will be able to read and analyze data from the
stream.
Amazon Simple Storage Service S3

Amazon S3 is a type of object storage that allows you to store and
recover any quantity of data from any location. It is a low-cost storage
solution with business resilience, reliability, efficiency, privacy, and
infinite expansion.

Amazon S3 is a web service that allows you to store and retrieve an

infinite quantity of data from any place and at any time. You may
quickly create projects that integrate cloud-native storage using this
service. Because Amazon S3 is easily customizable and you only pay for
what you use, you can start small and scale up as needed without
sacrificing performance or dependability.

Amazon S3 is also built to be highly adaptable. Instead of finding out
how to store their data, Amazon S3 allows developers to focus on
innovation like building a simple FTP system or a complex web
application like the Amazon.com retail website. You can read the same
piece of data a million times or only for emergency disaster recovery
and store whatever type and amount of data you desire.
AWS CloudFormation

AWS CloudFormation is a tool that makes it simple for developers and
organizations to construct a collection of linked AWS and third-party
resources and then provision and manage them logically and
reasonably.

Developers may use a simple, declarative approach to deploy and
change compute, database, and many other resources, abstracting away
the complexities of individual resource APIs. AWS CloudFormation is
meant to make resource lifecycle management repeatable, predictable,
and safe, with features such as automatic rollbacks, automated state
management, and resource management across accounts and regions.
Multiple ways to generate resources have recently been added,
including leveraging AWS CDK for writing in higher-level languages,
importing existing resources, and detecting configuration drift. A new
Registry makes it easier to create custom types that inherit some of
CloudFormation's core functionalities.

Problem

Assume you work in an organization as Data Analytics. Suppose your
organization wanted to stream and store data directly from devices.
You can capture essential data from IoT devices, embedded systems, or
things like customer applications and store that into a storage
destination. So, how can you automate this task?

Solution

The solution is using AWS services to automate your work. You can use
Kinesis Data Streams to generate or collect data. You should use Kinesis
Data Firehose to store data at any storage destination for storing real-
time data. The other helping service that you can use is AWS
CloudFormation to create a stack. An S3 bucket is used as a storage
destination to store the streaming data.

Note: Before starting this demo, make sure to create AWS Kinesis
Data Streaming and AWS CloudFormation stack, as it is used in this
lab and as mentioned in the above demo of Kinesis Data Stream.

Step 1: Create Kinesis Data Firehose

1. Log in to the AWS Console.
2. Click on the Services.

3. Select the Kinesis from the Analytics.

4. Select the Kinesis Data Firehose.

5. Click on the Create delivery stream button.

6. Select the source Amazon Kinesis Data Stream.

7. Select the Destination Amazon S3.

8. Click on the Browse button to select delivery stream.

9. Select the ips-my-data-stream.

10. Click on the Choose button.

11. Give a delivery stream name ips-my-delivery- stream.

12. Select the Disabled Data Transformation.

13. Select the Disabled Record Format Conversion.

14. Click on the Create button to create an S3 bucket.

15. Give an S3 bucket name ips-my-user-data-output-bucket.

16. Click on the Create bucket.

17. Click on the browse button.

18. Select the ips-my-user-data-output-bucket.

19. Click on the Choose button.

20. Click on the Buffer hints, compression and encryption.

21. Set the Buffer size to 1 MB.

22. Set the Buffer interval to 60 sec.

23. Click on the Create delivery stream button.

24. Hence, the Kinesis Data Firehose is created.

Step 2: Viewing Collected Data

1. Click on the Services.

2. Select the S3 from the Storage.

3. Click on the ips-my-user-data-output-bucket.

4. Click on the folder. Finally, you can see a file that is uploaded
onto the S3 bucket.

5. Click on the Refresh button, and you will see more data is
uploaded.

6. Hence, you can successfully store streamed data into the S3
destination using AWS Kinesis Data Firehose.

Kinesis Video Streams
Introduction
Amazon Kinesis Video Streams is a fully managed Amazon Web
Services (AWS) solution for streaming live videos from devices to the
AWS Cloud. Develop applications for real-time video processing and
batch-oriented video analytics.

Kinesis Video Streams offers more than simply video data storage. You
may use it to see your video feeds as they arrive in the cloud in real-
time. You may either watch your live streams via the AWS Management
Console or create your monitoring application that displays live video
using the Kinesis Video Streams API library.

Kinesis Video Streams can gather enormous volumes of live video data
from various sources, including cellphones, security cameras, webcams,

and cameras embedded in automobiles or drones. Audio, thermal
imaging, depth data, RADAR data, and other non-video time-serialized
data can also be transmitted. You can develop real-time applications
that access the data frame-by-frame for low-latency processing. Kinesis
Video Streams are source-independent. You may use the GStreamer
library to stream video from a computer's webcam or RTSP to stream
video from a camera on your network.

You may also set your Kinesis video stream to keep media data
indefinitely for the duration of the retention period. Kinesis Video
Streams automatically save and encrypt this data at rest. Kinesis Video
Streams also time-index stored data based on both producer and
ingestion time stamps. You may design applications that regularly
batch-process video data or create applications that require ad hoc
access to previous data for various use cases.

Amazon EC2 instances can execute your applications, whether they are
real-time or batch-oriented. These applications may utilize open-source
deep-learning algorithms to handle data or use third-party applications
that interface with Kinesis Video Streams.

Kinesis video streams is a service that allows us to stream videos into
the AWS cloud. You can build real-time video processing applications.
Suppose you wanted to use videos within the machine learning process.
In that case, you could use Kinesis Video Streams to stream those live
feeds or stream those videos into AWS. You will also see how you can
use Kinesis Video Streams to stream images in real-time or stream
audio files in real-time. The way that Kinesis Video Streams works are
that you have your data producers, which can be webcams or security
cameras. These can also be things like non-video data, such as audio

feeds or images and radar data. These data producers send the data into
AWS, where you have different types of continuous or batch
consumers. These are the applications that are going to consume and
process the video streaming data.

These users are commonly referred to as Kinesis video streams
applications. You can write applications that consume and process the
video streams in real-time or after that data has been stored onto S3.
You could write the applications to process it once it has been held, and
you know with confidence that it is durably backed up. You can write
consumer applications on Amazon EC2 instances; these consumers get
the data in fragments and frames from Kinesis Video Streams to view
the process and analyze it. Once you process or consume that data, you
can always store it off into S3, or you can store it off into S3. You can
then consume that data, process it, and analyze it however you see fit,
for instance, for machine learning models.

Figure 4-23: Kinesis Video Stream

EXAM TIP: Amazon Kinesis Video Streams is a fully managed

Amazon Web Services (AWS) solution for streaming live video from
devices to the AWS Cloud. You can create programs for batch-
oriented video analytics and real-time video processing.

Producer & Consumer Applications
CCTV monitoring streams video into the cloud using an Amazon cloud
cam, which is an opt-in service that you can subscribe to. This is an
example where videos are being streamed every day. You have a camera
that streams through your wifi and collects any videos you want, for
either surveillance or in front of your own home. This camera has some
software installed onto it that pushes Video Streams into the cloud.
Since Amazon builds it, it is all captured by Amazon, and then it has to
use Kinesis Video Streams.

Hence, you can imagine those are stored off into S3. It also sends
different notifications if it recognizes certain motions or certain people,
or even when dogs are barking. It means that it is using some of the
machine learning and artificial intelligence services that AWS offers. It
is also using some of the notification systems that AWS offers. Thus,
this is just a simple example of Video Streams. You can imagine that
this is being captured and analyzed through Amazon Kinesis Video
Streams.

Figure 4-24: Data Coming from CCTV Camera through Kinesis Video Stream

A security camera, a camera from a cell phone or even radar, uses the
Kinesis Video Streams libraries that are installed onto the devices for
securely connecting to the Kinesis Video Streams application. These
libraries also give us techniques for controlling media sources, receiving
data from sources, and managing the stream lifecycle as data flows from
these devices into Kinesis Video Streams. These video producers or
media sources can be from anything, such as camera media or
microphone media. They can even be things like infrared cameras,
which could be radar or depth cameras, and even things like data logs
from text files or application logs. Hence, you could use Kinesis Video
Streams to capture that type of information as well. AWS offers us
different producer clients and producer libraries to import or ship that
data off into Kinesis Video Streams. There are a few different ways that
media can be streamed into the Kinesis video stream service. They can
be streamed in real-time or have a buffer for a few seconds or after the
media uploads.

The software installed onto these devices can extract the video and the

data in frames and then uploads those to the Kinesis video stream
service. You can use different consumers to get the data after you have
those frames into the Kinesis video stream service. The fragments of the
frames you can view, process, or analyze. You can use applications to
analyze this information. You can stream it right back and view it in the
console or store it all for later use. Hence, with these consumer
applications, you can consume and process the data in real-time or do it
after it has been stored off into S3.

Figure 4-25: Producer & Consumer Applications

EXAM TIP: Obtains data from a Kinesis video
stream, such as fragments and frames, for
viewing, manipulating, or analyzing. When
low-latency processing is not necessary, you
may build applications that ingest and analyze
data from Kinesis video streams in real-time.
These users are also known as Kinesis video
streams applications.

Real-time vs. Batch-oriented
There are many different services that you can use to analyze our data,
either in real-time or in a batch-oriented process. You can use Amazon
EC2 instances; you can hook it into Amazon Rekognition that allows us
to connect in machine learning services for our video stream. You can
also hook it into several other AWS and even connect it to other third-
party services. You can use any of these services that you see below in
the figure to analyze, process, and consume our video applications.

Figure 4-26: Real-time VS Batch-oriented

EXAM TIP: Kinesis Video Streams may be used
to build custom real-time applications. That
deals with live data streams and batch or ad hoc
applications that work with durably stored data.
There are no strict latency limits. To design,
deploy, and maintain bespoke applications to
process and analyze data streams. You can
utilize open-source (Apache MXNet, OpenCV),
homemade, or third-party AWS Marketplace
solutions.

Kinesis Video Stream Benefits
The following are some of the advantages of using Kinesis Video
Streams:

1. Connect & Stream from Millions of Devices:

Kinesis video streams link and stream video, audio, and other data from
millions of devices, such as cellphones, drones, and dash cams. Using
the Kinesis Video Streams producer libraries, you may set up your
devices to broadcast in real-time or as after-the-fact media uploads.

2. Durably Store, Encrypt, & Index Data:

You may set your Kinesis video stream to save media data indefinitely
for specified retention periods. Kinesis Video Streams additionally
create an index over the recorded data based on timestamps supplied
by the service producer. Using the time index in your applications, you
may obtain specified data in a stream.

3. Focus on Managing Applications Instead of Infrastructure:

Because Kinesis Video Streams is server-less, no infrastructure is
required to set up or administer. You do not have to worry about the
underlying infrastructure's deployment, setup, or elastic scalability as
your data streams and the number of consuming applications increase
and decline. Kinesis Video Streams provide all of the administration
and maintenance required to automatically maintain streams, allowing
you to concentrate on the applications rather than the infrastructure.

4. Build Real-Time & Batch Applications on Data Streams:

Kinesis Video Streams may be used to construct bespoke real-time

applications. That works on live data streams and batch or ad hoc
applications that function on durably persistent data. It does not have
tight latency constraints, so you may use open source (Apache MXNet,
OpenCV), homemade, or third-party solutions from the AWS
Marketplace to create, deploy, and manage bespoke applications to
process and analyze data streams. Kinesis Video Streams Get APIs allow
you to create several concurrent applications that can handle real-time
or batch mode data.

5. Stream Data More Securely:

Kinesis Video Streams encrypt all data as it passes through the service
and as it is saved. Kinesis Video Streams use AWS Key Management
Service to encrypt all data at rest and enforce Transport Layer Security
(TLS) based on data streaming from devices (AWS KMS). AWS Identity
and Access Management may also be used to manage data access
(IAM).

Kinesis Video Streams Working
Amazon Kinesis Video Streams is a fully managed AWS service that
allows you to broadcast and store live video to the cloud from your
devices. After that, you may create your applications for real-time video
processing or batch-oriented video analytics.

The figure below depicts the operation of Kinesis Video Streams.

Figure 4-27: Kinesis Video Streams Working

The figure above depicts the interplay of the following elements:

Producer:

Any source that generates data for the Kinesis video stream is a piece of
video-generating equipment. Such a security camera, body-worn
camera, smartphone, or dashboard camera might be considered a
producer. Non-video data, such as audio feeds, pictures, or RADAR
data, can also be sent by a producer.

Kinesis Video Streams Producer Libraries:

A collection of simple applications and libraries can be installed and
configured on your devices; these libraries make it simple to connect to
securely. You can consistently stream video in various ways, including
in real-time, after a brief buffering period, or as after-the-fact media

uploads.

Kinesis Video Stream:

It is a resource that lets you send live video data, store it if you want to,
and then make it available for consumption in real-time, batch, or ad
hoc mode. A Kinesis video stream typically has only one producer
releasing data into it.

Audio, video, and other time-encoded data streams, such as depth-
sensing and RADAR feeds, can be sent via the stream. The AWS
Management Console may be used to generate a Kinesis video stream,
or the AWS SDKs can be used to build one programmatically.

A Kinesis video stream can be consumed in parallel by many separate
applications.

Consumer:

Gets data from a Kinesis video stream, such as fragments and frames, to
watch, manipulate, or analyze. These users are commonly referred to as
Kinesis video streams applications. When low-latency processing is not
required, you may create applications that ingest and analyze data from
Kinesis video streams in real-time or after it has been durably stored
and time-indexed. These consumer applications may be built to run on
Amazon EC2 instances.

Kinesis Video Stream Parser Library:

It allows Kinesis video streaming applications to properly get material
from Kinesis video streams with minimal latency. Furthermore, it
parses the media frame boundaries, letting programs concentrate on
processing and analyzing the frames themselves.

AWS Kinesis Video Stream Use Cases
Following are some uses of Kinesis Video Stream:

1. Smart City with Amber Alert Systems:

It helps capture and stream live video feeds from city cameras and
ingest, store, and index video streams from cities cameras. For example,
it helps match the license plate of the suspected vehicle and sends
alerts to law enforcement officials.

2. Equipment Preventive Maintenance

Another example of streaming thermal images from industrial
manufacturing equipment and Amazon will ingest these thermal
images. You can set up applications to check the different thermal
profiles to predict if overheating is happening. Suppose there is some
type of defect or overheating is happening. In that case, you can
schedule some preventative maintenance or have someone else come
out there and replace that given part. You can kind of predict that
ahead of time.

Kinesis Data Analytics
Introduction
You may use standard SQL to handle and analyze streaming data using
Amazon Kinesis Data Analytics for SQL Applications. The service lets
you quickly develop run sophisticated SQL code against streaming
sources to do time-series analytics, feed real-time dashboards, and
generate real-time metrics.

To get started with Kinesis Data Analytics, develop a Kinesis data
analytics application that constantly reads and analyses streaming data.

Data may be ingested via Amazon Kinesis Data Streams and Amazon
Kinesis Data Firehose streaming sources. Then, using the interactive
editor, you can write your SQL code and test it with live streaming data.
You may also choose where you want Kinesis Data Analytics to deliver
the results.

Amazon Kinesis Data Firehose (Amazon S3, Amazon Redshift, Amazon
OpenSearch Service, and Splunk), AWS Lambda, and Amazon Kinesis
Data Streams are supported as destinations by Kinesis Data Analytics.

Kinesis Data Analytics is a cool application that allows you to take
streaming data and run SQL queries on them to get started using
Kinesis Data Analytics. You have to have someplace from where the
input stream begins. Based on where the data is coming from, you have
two choices: you can either choose Kinesis Data Streams or Kinesis
Data Firehose. You can create a Kinesis Data Analytics application that
takes the data from the input stream and runs queries on that data. You
can also use data that is in S3 to run queries to merge that data. These
queries are going to produce successful records, and they might also
produce any error records that happen.

The successful records will be a subset of the information you want, and
any errors will be captured as well. You can handle these differently if
you need to. Once you create one or more in-application streams, this
will hold our intermediate results for the actual query you are running.
Hence, you could store this information off, or you can keep that within
our Kinesis Data Analytics application. Refer to it in external
destinations whose examples are things like Kinesis Data Streams and
Kinesis Data Firehose. Once the output stream has been forwarded to
Kinesis Data Streams or Kinesis Data Firehose, you can store that data

off into S3, Redshift, or any other destinations that Kinesis Data
Firehose allows us to store our data. You can use Kinesis Data Streams
to forward the data along to AWS Lambda. Since it is in Lambda, you
can then write custom applications around it and have business analysis
tools analyze that data. Some custom real-time applications view
different dashboards, as shown in the figure below:

Figure 4-28: Kinesis Data Analytics

EXAM TIP: Using Amazon Kinesis Data Analytics for SQL
Applications, you may handle and analyze streaming data using
conventional SQL. The service enables you to develop swiftly.
Execute complex SQL code against streaming inputs to perform
time-series analytics, feed real-time dashboards, and produce real-
time metrics.

Within the console, Kinesis data analytics is easy to set up. You
essentially tell it where the streaming input sources from either
Firehose or data streams are. You can write sequel queries and output
those results onto S3 or view them in real-time.

Figure 4-29 Kinesis Analytics Console

AWS Kinesis Data Analytics Benefits
You can create SQL code that reads, analyzes, and stores data in real-
time using Amazon Kinesis Data Analytics. You may build applications
that convert and give insights into your data using conventional SQL
queries on streaming data. The following are some use-case examples
for Kinesis Data Analytics:

1. Generate Time-Series Analytics:

Metrics may be calculated over periods and then sent to Amazon S3 or
Amazon Redshift through a Kinesis data delivery stream.

2. Feed Real-Time Dashboards:

You may feed real-time dashboards with aggregated and processed
streaming data findings.

3. Create Real-Time Metrics:

Custom metrics and triggers may be created for usage in real-time
monitoring, alerts, and alarms.

EXAM TIP: You may input aggregated and processed streaming data
discoveries into real-time dashboards.

Kinesis Data Analytics Working
In Amazon Kinesis Data Analytics, the primary resource that you may
build in your account is an application. The AWS Management Console
or the Kinesis Data Analytics API may be used to develop and
administer applications. Kinesis Data Analytics provides API functions
for application management.

Kinesis Data Analytics applications constantly read and process real-
time streaming data. To handle the incoming streaming data and
provide output, you can create application code in SQL. The output is
then written to a location specified by Kinesis Data Analytics. The
figure below depicts a standard application architecture:

Figure 4-30 Kinesis Data Analytics Working

Each application is given a name, description, version ID, and status.
When you initially construct an application, Amazon Kinesis Data
Analytics provides it a version ID. When you alter any application
configuration, this version ID is updated. Kinesis Data Analytics
changes the current application version ID when you add an input
configuration. You can add or remove a reference data source, add or
delete an output configuration, or update the application code. Kinesis
Data Analytics also keeps track of when an application was developed
and when it was last updated.

In addition to these fundamental features, each application includes the
following:

Input:

Your application is a streaming source. You may choose between a
Kinesis data stream and a Kinesis Data Firehose data delivery stream as
the streaming source. The streaming source is mapped to an in-
application input stream in the input settings. The in-application
stream functions similarly to a continually updating table to execute
SQL operations such as SELECT and INSERT. Additional in-application
streams can be created in your application code to store intermediate
query results. You can divide a single streaming source into numerous
in-application input streams to enhance performance.

Each Amazon Kinesis Data Analytics application stream contains a
timestamp column named Timestamps and the ROWTIME Column.
This column can be used in time-based windowed queries.

A reference data source can be configured as an input data stream to
supplement your application. As a result, an in-application reference

table is created. Your reference data must be saved as an object in your
S3 bucket. Amazon Kinesis Data Analytics reads the Amazon S3 object
and produces an in-app table when launching the application.

Application Code:

A set of SQL queries that process input and output results. SQL
statements can be written against in-application streams and reference
tables. JOIN queries can also be used to integrate data from both of
these sources.

Application code can be as simple as a single SQL statement that picks
a streaming input and outputs the results. It may also be a sequence of
SQL statements, with the output of one feeding into the input of the
next. You may also create application code to divide an input stream
into several streams. Additional queries can then be used to handle
these streams.

Output:

Query results are sent to in-application streams in application code. To
retain intermediate results, you can construct one or more in-
application streams in your application code. Next, you may set the
application output to persist data to external destinations in the in-
application streams. That contains your application output (also known
as in-application output streams). A Kinesis Data Firehose delivery
stream or a Kinesis data stream can be used as an external target. Take
note of the following facts regarding these locations:

A Kinesis Data Firehose delivery stream may be configured to write results to Amazon
S3, Amazon Redshift, or Amazon OpenSearch Service (OpenSearch Service).

Instead of Amazon S3 or Amazon Redshift, you may alternatively publish application
output to a specific destination. To accomplish this, you must specify a Kinesis data
stream as the destination in your output settings. Then, you tell AWS Lambda to poll

the stream and execute your Lambda function. Stream data is fed into your Lambda
function code. You can write the incoming data to your destination in your Lambda
function code.

EXAM TIP: Kinesis Data Analytics quires read and analyze real-time
streaming data continuously. You write SQL application code to
handle the incoming streaming data and deliver output.

AWS Kinesis Data Analytics Use Cases
Following are some uses of the AWS Kinesis Data Analytics and where
you should use Kinesis Data Analytics:

1. Responsive Real-Time Analytics:

Assume you work for an organization. It is your job to find the root
cause of any errors or response time issues you are having with your
application. You can build responsive and real-time analytic
applications. Whenever you use Kinesis Data Analytics coupled with
Data Firehose, you can use Data Firehose as the transport layer for
particular logging data. You can uncover real-time monitoring metrics,
such as response time errors or error rate spikes. Once all of the data
goes through this pipeline, you can send it off to Amazon CloudWatch
for additional metrics displayed in a standard dashboard across the
business. Hence, anyone within the organization or anyone within your
team could see these metrics within CloudWatch. You can include
metrics like the overall traffic summary, response time errors, total
requests, and any API metrics. You can look at response time
percentiles, the number of successful requests, or the number of error
requests. You can look at things like disk usage, network, and CPU

utilization. Using Kinesis Data Analytics makes it super simple to
integrate the other Kinesis services like Data Firehose, Kinesis Data
Streams, and Lambda to create things like responsive real-time
analytics. Example: Uncover real-time monitoring metrics such as
response time and error-rate spikes.

2. Managing Real-Time Gaming Metrics:

Another example assumes you need to manage real-time gaming
metrics. Imagine you work for a company that builds iPhone or
Android applications for games. You can use Kinesis Data Streams
combined with AWS Lambda and Kinesis Data Analytics to build
sophisticated pipelines. You can capture important streaming data like
the gamer's minimum and the average time they play the game. As a
result, if there is a significant increase in user gaming traffic, you may
add more shards to your Kinesis Data Stream. Utilize Kinesis Data
Analytics to combine all data to guarantee that the final analytics
output is right. Hence, you could store it into some data store or build
real-time dashboards for the data coming from the stream. Example:
Aggregate and join important gaming data like gamers account or min,
max, and average time playing the game over a 10-minute sliding
window.

Demo: Kinesis Data Analytics
Introduction

Kinesis Data Analytics

Amazon Kinesis Data Analytics is the most straightforward method for
converting and analyzing real-time streaming data using Apache Flink.

Apache Flink is an open-source data stream processing framework and
engine. Apache Flink applications' creation, maintenance, and
integration with other AWS services are made easier using Amazon
Kinesis Data Analytics.

Amazon Kinesis Data Analytics handles everything needed to
constantly operate streaming applications and grow automatically to
meet the amount and throughput of your incoming data. There are no
servers to manage with Amazon Kinesis Data Analytics and no
minimum charge or setup cost. You pay for the resources your
streaming applications utilize.

Kinesis Data Streams

You may use Amazon Kinesis Data Streams to create custom
applications that process or analyze streaming data for specific
purposes. To an Amazon Kinesis data stream, you may constantly add
data from hundreds of thousands of sources, such as clickstreams,
application logs, and social media. Within seconds, your Amazon
Kinesis Applications will be able to read and analyze data from the
stream.

Amazon Simple Storage Service S3

Amazon S3 is a type of object storage that allows you to store and
recover any quantity of data from any location. It is a low-cost storage
solution with business resilience, reliability, efficiency, privacy, and
infinite expansion.

Amazon S3 is a web service that allows you to store and retrieve an
infinite quantity of data from any place and at any time. You may
quickly create projects that integrate cloud-native storage using this

service. Because Amazon S3 is easily customizable and you only pay for
what you use, you can start small and scale up as needed without
sacrificing performance or dependability.

Amazon S3 is also built to be highly adaptable. Instead of finding out
how to store their data, Amazon S3 allows developers to focus on
innovation. Build a simple FTP system or a complex web application
like the Amazon.com retail website. Read the same piece of data a
million times or only for emergency disaster recovery, and store
whatever type and amount of data you desire.

AWS CloudFormation

AWS CloudFormation is a tool that makes it simple for developers and
organizations to construct a collection of linked AWS and third-party
resources and then provision and manage them logically and
reasonably.

Developers may use a simple, declarative approach to deploy and
change compute, database, and many other resources, abstracting away
the complexities of individual resource APIs. AWS CloudFormation is
meant to make resource lifecycle management repeatable, predictable,
and safe, with features such as automatic rollbacks, automated state
management, and resource management across accounts and regions.
Multiple ways to generate resources have recently been added,
including leveraging AWS CDK for writing in higher-level languages,
importing existing resources, and detecting configuration drift. A new
Registry makes it easier to create custom types that inherit some of
CloudFormation's core functionalities.

Problem

Assume you work in an organization as a Data Analytics engineer. Your
organization has thousands of users interacting with the organization
application. The organization gives you a task to capture real-time data
about the users for a marketing campaign. For users aged 21 and up, you
must collect information such as name, age, gender, and location. So,
how can you automate this task?

Solution

The solution is using AWS services to automate your work. You use
Kinesis Data Streams to generate or collect data, and then you use
Kinesis Data Analytics to analyze data by running SQL queries and for
storing the real-time analyzing data. The other helping service that you
can use is AWS CloudFormation to create a stack. An S3 bucket is used
to store that transformed data.

Note: Before starting this demo, make sure to create AWS Kinesis
Data Streaming and AWS CloudFormation stack, as used in this lab
and as mentioned in the above demo of Kinesis Data Stream.

Step 1: Create Kinesis Data Analytics

1. Log in to the AWS Console.
2. Click on the Services.

3. Select the Kinesis from the Analytics.

4. Select the Kinesis Data Analytics.

5. Click on the Create Application button.

6. Select the Legacy SQL.

7. Give an application name IPS-data-transformation-application

8. In the Description box, type the following IPS-data-transformation-application

9. Click on the Create application button.

10. Click on the Steps to configure your application.

11. Click on the Configure source stream button.

12. Select the Kinesis Data Stream.

13. Click on the Browse button.

14. Select the IPS-my-data-stream, and then click on the Choose button.

15. Scroll down, and click on the Discover Schema button.

16. You will see the Raw and Formatted streaming data, which is collected.

17. Click on the Save changes button.

18. Click on the Real-time analytics tab.

19. Then click on the Configure button.

20. Copy and paste the SQL queries in the code editor from the file provided in the
following Github link: https://github.com/ACloudGuru-
Resources/Course_AWS_Certified_Machine_Learning/blob/master/Chapter3/create-
subset-transformation-query.sql

https://github.com/ACloudGuru-Resources/Course_AWS_Certified_Machine_Learning/blob/master/Chapter3/create-subset-transformation-query.sql

21. Click on the Save and run application button.

22. It will take a few minutes. Once it is completed, you will see the subset of data.

Amazon Managed Streaming for Kafka
Apache Kafka
Apache Kafka is a real-time data input and processing distributed data
storage system. Streaming data is constantly created by hundreds of
data sources, which often transmit data records simultaneously. A
streaming platform must manage this continual input of data while still
processing it sequentially and progressively. Apache Kafka was
originally developed by LinkedIn and was made open source in 2011.
The Apache community then took it over and a distributed streaming
platform with three key capabilities.

Kafka offers its consumers the following three primary functions:

Streams of recordings can be published and subscribed to.
Streams of records can be effectively stored in the sequence in
which they were created.
Real-time processing of record streams.

Kafka is generally used to construct real-time streaming data pipelines
and applications that react to data streams. It integrates
communications, storage, and stream processing to enable the storage
and analysis of both historical and real-time data.

A data pipeline consistently processes and
transports data from one system to another,
whereas a streaming application consumes data
streams. For example, you use Kafka to ingest if
you want to build a data pipeline. That uses user
activity data to track how people use your website

in real-time—store streaming data while sending
reads to the applications that run the data pipeline.
Kafka is also frequently used as a message broker
solution, a platform for processing and mediating
messages between two applications.
Kafka combines two communications paradigms, queuing and publish-
subscribe, to offer customers the core features of both. Queuing
distributes data processing over numerous consumer instances, making
it very scalable. Traditional queues, on the other hand, do not support
multiple subscribers. Because every message is delivered to every
subscriber, the publish-subscribe strategy cannot distribute work across
several worker processes. Kafka uses a partitioned log design to connect
these two systems. A log is an ordered sequence of data divided into
segments or partitions that correspond to various subscribers. It implies
that several subscribers can be assigned to the same topic, where each
one is allocated a section to allow for greater scalability. Finally, Kafka's
paradigm includes a replay ability, which enables many independent
applications reading from data streams to operate independently and at
their rate.

EXAM TIP: Apache Kafka is a distributed data storage system that
accepts and processes data in real-time. Hundreds of data sources
regularly generate streaming data, which frequently transmits data
records at the same time. A streaming platform must manage this
continuous data flow while still processing it sequentially and
progressively.

Apache Kafka Publish/Subscribe Conceptually
To understand how to publish and subscribe or pub/sub systems work,
think about a coffee house. You know that there is always a bulletin
board with advertisements inside a coffee house, for example, someone
trying to give out guitar lessons or someone looking for a specific math
tutor. What people do is post messages on the bulletin board. They can
put information into a central place without knowing the actual
receiver or the people reading the messages. The publisher is the person
who puts the post-it note on the board, while the subscribers are those
people who go to it and take down the post-it note or read the
advertisement. In this scenario, the bulletin board is known as a broker.
It allows publishers and subscribers to decouple from one another,
which reduces complexity.

Apache Kafka Management
The Apache Kafka is an open-source piece of software. You can
download that and install it onto a server or an EC2 instance. However,
if you decide to go down that path, you have to manage all of these
Apache Kafka servers yourself. You have to ensure that the cluster is up
to date and make sure that it is auto-scaling as well. It scales up to
demand and scales back down whenever the streaming data spikes
decrease. This is where MSK, Managed Streaming service for Kafka,
comes to the rescue.

Figure 4-31: Apache Kafka Management

Amazon MSK

Amazon Managed Streaming for Apache Kafka
(Amazon MSK) is a completely managed service
that allows you to design and run applications that
handle streaming data using Apache Kafka.
Amazon MSK takes control-plane actions,
including building, updating, and removing
clusters. It enables the usage of Apache Kafka data-
plane tasks, such as data production and data
consumption. It runs Apache Kafka open-source
versions and implies that existing applications, tools,
and plugins from partners and the Apache Kafka
community are supported without application
code modifications.

The figure below depicts the operation of Amazon MSK:

Figure 4-32: Amazon MSK

The figure depicts the interplay of the following elements:

Broker nodes: You indicate how many broker nodes you want
Amazon MSK to construct in each Availability Zone when
building an Amazon MSK cluster. There is one broker per
Availability Zone in the sample cluster depicted in this diagram.

Each Availability Zone has its subnet of virtual private cloud
(VPC).
Zookeeper nodes: Amazon MSK will also set up Apache
Zookeeper nodes for you. Apache Zookeeper is a free and open-
source server that allows for highly dependable distributed
coordination.
Producers, consumers, and topic creators: Amazon MSK
allows you to establish topics, produce and consume data, and
leverage Apache Kafka data-plane functions.
Cluster Operations: To accomplish control-plane tasks, you
can utilize the AWS Management Console, the AWS Command
Line Interface (AWS CLI), or the SDK APIs. For example, you
can establish or remove an Amazon MSK cluster, see the
attributes of a cluster, and change the number and type of
brokers in a cluster.

Amazon MSK identifies and recovers automatically from the most
frequent cluster failure scenarios, allowing your producer-consumer
applications to continue their write and read activities with minimum
effect. When Amazon MSK detects a broker failure, it either mitigates it
or replaces the unhealthy or unreachable broker with a new one.
Furthermore, it reuses storage from the older broker wherever feasible
to limit the amount of data that Apache Kafka needs to duplicate. The
impact on your availability is limited to the time it takes Amazon MSK
to perform the detection and recovery. Following a recovery, your
producer and consumer applications will be able to interact using the
same broker IP addresses that they used before the incident.

EXAM TIP: Amazon MSK (Amazon Managed
Streaming for Apache Kafka) is a fully managed
service. It enables you to create and execute
applications that use Apache Kafka to handle

streaming data. Amazon MSK performs control-
plane operations, such as cluster creation,
updating, and removal.

MSK Architecture
You can think about it as being the bulletin board or kind of the central
place where the messages will live, or in our case, our streaming data.
Hence, you have our AWS account, and within that, you have VPC.
Inside of that VPC, you have our broker nodes. You have different
broker nodes that live in different availability zones. In our case, you
have three different availability zones, and each will have a single
subnet in the availability zones. Thus, whenever you create an MSK
cluster, you need to provide different subnets. These need to live in
different availability zones for high availability. It will also create
Apache zookeeper nodes, the coordinating device between our broker
and zookeeper nodes. Messages are published and subscribed to
through a customer VPC or a VPC in the same AWS account. You have
producers that publish or produce information onto the broker nodes.
Then you have consumers or subscribers who subscribed to those
messages to get the published information back. The job of a zookeeper
is to handle all of the coordination and to create topics. A topic is just a
category or a feed name where the records are published to.

The zookeeper nodes are in charge of coordination and topic creators.
However, they are also taking care of the different partitions similar to
shards in Kinesis Data Streams. One of the key benefits of using MSK is
that it automatically detects and recovers from our clusters' most

common failure scenarios. This means that our producers and
consumer applications can continue writing and reading operations
with the most minimal impact. That is one of the reasons you have it in
several different availability zones for our broker nodes. As a result,
MSK recognizes a problem and mitigates it by replacing the unhealthy
or unavailable broker with a new broker. This is the power behind using
MSK and Apache Kafka through AWS's managed service.

Figure 4-33: MSK Architecture

EXAM TIP: Amazon MSK will also configure Apache Zookeeper
nodes on your behalf. Apache Zookeeper is a free and open-source
server for highly reliable distributed coordination.

Compare MSK & Kinesis Data Stream
The big question is, how does MSK differ from Kinesis Data Streams?
One way they differ is by their provisioning model. In Kinesis Data
Streams, you will increase the number of shards when you increase the

throughputs. However, with MSK, you would need to increase the types
of instances or the number of instances within the MSK cluster. These
are going to be limited by the instance type that you are using within
your cluster. With Kinesis Data Streams, scaling is almost seamless,
meaning that you do not have to do anything to scale up your
applications.

All you have to do is add more shards. With MSK, it can be a little bit
trickier. Scaling is not seamless to the client. One important key feature
to remember is the retention time. For Kinesis Data Streams, it is one
day, and the max can be for seven days. However, for MSK, the default
retention time is seven days, but the maximum is unlimited. Hence,
you can have data stored for an unlimited amount of time in MSK in
your broker nodes. With Kinesis Data Streams, it has a deep AWS
integration. It is almost seamlessly integrated with tons of different
AWS services. It makes it easy to use and integrate within your other
applications, but with MSK, it is more for third-party tooling. Hence, if
there is some service that you are using that Kinesis Data Streams just
does not interact with very well, then MSK might be a better option.
You will have no problems choosing one over the other for your
streaming service solutions.

Figure 4-34: Compare MSK & Kinesis Data Stream

Streaming Services Uses Cases
Here are some scenarios are given to see and decide which streaming
service to use:

Task at hand
Which Kinesis
service to use?

Why?

Need to stream
Apache log files

directly from (100)
EC2 instances and

store them into
Redshift.

Kinesis Firehose

Firehose can easily
stream data directly to

a final destination.
First, the data is loaded

into S3 and then
copied into Redshift

using the COPY
command.

Need to stream live
video coverage of a
sporting event to

Kinesis Video Streams
process real-time

streaming video data

distribute to
customers in near

real-time.

Kinesis Video
Streams

(audio, images, radar)
and feed into other

AWS services.

Need to transform
real-time streaming

data and
immediately feed it
into a custom ML

application.

Kinesis Streams

Kinesis Streams allow
for streaming huge
amounts of data,

process/transforming
it, and then storing or
feeding it into custom
applications or other

AWS services.

Need to stream and
store every

newspaper article
since 1850 for

consumer
applications, and the

messages never
expire.

Amazon Managed
Streaming for
Kafka(MSK)

MSK gives us the
ability to tune for

optimal throughput
and latency, as well as

an unlimited
retention period.

Real-time data must
be queried, metric

graphs must be
created, and output

stored in S3.

Kinesis Analytics

Kinesis Analytics gives
you the ability to run

SQL queries on
streaming data, then

store or feed the
output into other AWS

services.

Table 4-01: Streaming Services Uses Cases

Lab 4-02: Joining, Enriching, & Transforming
Streaming Data with Amazon Kinesis
Introduction
Kinesis Data Streams
You may use Amazon Kinesis Data Streams to create custom
applications that process or analyze streaming data for specific
purposes. To an Amazon Kinesis data stream, you may constantly add
data from hundreds of thousands of sources, such as clickstreams,
application logs, and social media. Within seconds, your Amazon
Kinesis Applications will be able to read and analyze data from the
stream.

Kinesis Data Analytics
Amazon Kinesis Data Analytics is the most straightforward method for
converting and analyzing real-time streaming data using Apache Flink.
Apache Flink is an open-source data stream processing framework and
engine. Apache Flink applications' creation, maintenance, and
integration with other AWS services are made easier using Amazon
Kinesis Data Analytics.

Amazon Kinesis Data Analytics handles everything needed to
constantly operate streaming applications and grow automatically to
meet the amount and throughput of your incoming data. There are no
servers to use with Amazon Kinesis Data Analytics and no minimum
charge or setup cost. Thus, you pay for the resources your streaming
applications utilize.

Kinesis Data Firehose
Kinesis Data Firehose is a solution for streaming ETL. It is the most
convenient method for loading streaming data into data storage and
analytics tools. It can collect, transform, and load streaming data into
Amazon S3, Amazon Redshift, Amazon Elasticsearch Service, and
Splunk. It enables near-real-time analytics with your existing business
intelligence tools and dashboards. It is a fully managed service that
scales automatically to meet your data flow and does not require any
ongoing management. It may also batch, compress, and encrypt data
before loading it, reducing storage requirements at the destination and
enhancing security.

AWS Lambda
AWS Lambda allows you to run code without the need to create or
manage servers. There is no charge when your code is not executing;
you only pay for the compute time you use. You can run code for nearly
any application or backend service with Lambda, and you do not have
to worry about administration. Upload your code, and Lambda will
handle everything necessary to run and grow it with high availability.
You may configure your code to be automatically triggered by other
AWS services, or you can access it directly from any computer or
smartphone app.

Amazon Simple Storage Service S3
Amazon S3 is a type of object storage that allows you to store and
recover any quantity of data from any location. It is a low-cost storage
solution with business resilience, reliability, efficiency, privacy, and
infinite expansion.

Amazon S3 is a web service that allows you to store and retrieve an

infinite quantity of data from any place and at any time. You may
quickly create projects that integrate cloud-native storage using this
service. Because Amazon S3 is easily customizable and you only pay for
what you use, you can start small and scale up as needed without
sacrificing performance or dependability.

Amazon S3 is also built to be highly adaptable. Instead of finding out
how to store their data, Amazon S3 allows developers to focus on
innovation. You can build a simple FTP system or a complex web
application like the Amazon.com retail website. You can read the same
piece of data a million times or only for emergency disaster recovery, as
well as store whatever type and amount of data you desire.

AWS CloudWatch
Amazon CloudWatch is a tracking service for Amazon Web Services
(AWS) cloud services and software. Amazon CloudWatch may be used
to collect and monitor data, monitor log files, and trigger alarms.
Amazon CloudWatch may be used to monitor Amazon EC2 instances,
DynamoDB tables, and RDS database instances, as well as custom
metrics and log files generated by your applications and services. Your
whole system may be monitored using Amazon CloudWatch, which
allows you to keep track of resource use, application performance, and
operational health. These insights might help you react and keep your
app working smoothly.

AWS Identity and Access Management (IAM)
Individuals and groups can be granted secure access to your AWS
resources by using IAM. It allows you to create and manage IAM users
and provide them access to your resources. Additionally, you have the
option of granting access to users outside of AWS (federated users).

Managed Policy: This contains the permission required to stop
an EC2 instance.

Inline Policy: This allows this role to be passed to another
service.

Trust Policy: Allows System Manager and EC2 to assume the
role. It enables EC2 to register with the Systems Manager and
Systems Manager to stop the EC2 instance.

AWS DynamoDB

DynamoDB is a high-performance, scalable, and non-relational
database service. Customers may use DynamoDB to transfer the
administrative duties of running and managing distributed databases to
AWS, allowing them to focus on other things, such as hardware
provisioning, setup and configuration, throughput capacity planning,
replication, software patching, and cluster scaling.

Problem
You work as a Data Analytics engineer for an organization with a
mobile application that allows users to place grocery store orders. The
organization gives you a task to create a streaming application that
helps rewards users who spend more than $100 on grocery orders. How
can you make this type of application?

Solution
The solution to creating a streaming application is to use AWS services.
You will create a streaming application that uses Kinesis Stream,
Lambda, and Kinesis Data Analytics. Kinesis Firehose is used to ingest,
enrich, filter, and store users’ orders into an S3 data lake.

Figure 4-35: Joining, Enriching & Transforming Streaming Data with Amazon
Kinesis

Step 1: Create Kinesis Data Stream

1. Log in to the AWS Console.
2. Click on the Services.

3. Select the Kinesis from the Analytics.

4. Create a data stream for incoming orders
5. Select the Kinesis Data Streams.
6. Click on the Create Data Stream button.

7. Give the name incoming-orders.

8. Enter the Number of shards: 1.

9. Click on the Create Data Stream button.

10. Click on the Data Streams.

11. Create a second data stream for enriched orders
12. Click on the Create Data Stream button.

13. Give a name enriched-orders.

14. Enter the Number of shards: 1.

15. Click on the Create Data Stream button.

16. Hence, both Kinesis data streams are created.

Step 2: Create Lambda Function to Enrich Records

1. Click on the Services.

2. Select the Lambda from the Compute.

3. Click on the Create function button.

4. Enter the name for the function enrich-orders-function.
5. Select the Python 3.8 Runtime.

6. Click on the Change default execution role.

7. Select the Create a new role with basic Lambda
permissions.

8. Click on the Create function button.

9. Click on the Configuration tab.

10. Click on the Triggers.

11. Click on the Role name URL.

12. Click on the Attach policies button.

13. Select the AmazonKinesisFullAccess.

14. Select the AmazonDynamoDBFullAccess.

15. Click on the Attach policy button.

16. Go back to the Lambda function dashboard, and click on the
Permissions.

17. Click on the Add trigger button.

18. Select a trigger Kinesis.

19. Select the incoming-orders Kinesis stream.

20. Enter the batch size as 10.

21. Click on the Add button.

22. Click on the Code tab.

23. Copy the code from the following provided link: https://das-
c01-data-analytics-specialty.s3.amazonaws.com/Labs/enrich-
data-lambda-function.py.

24. Paste the code in the Lambda function code editor.

https://das-c01-data-analytics-specialty.s3.amazonaws.com/Labs/enrich-data-lambda-function.py

25. Change the <OUTPUT_STREAM_NAME> to enriched-
orders.

26. Click on the Deploy button to save the changes.

Step 3: Start Streaming Data

1. We are using the Kinesis Live web app to stream the live data.

2. Fill in the streaming details.
3. In the Kinesis Stream Name field, enter incoming-orders.
4. In the AWS Region field, enter us-east-1.
5. Fill in the Access Key and Secret Access Key.

6. Click on the Start Streaming Data button to stream the
data.

7. As you can see, the data starts streaming into the Kinesis
Data Stream.

8. Go back to the Kinesis Data Stream Dashboard. Click on the
incoming-orders.

9. Click on the Monitoring tab.

10. You will see different graphs.

11. Click on the Data Streams.

12. Click on the enriched-orders.

13. Click on the Monitoring tab.

14. You will see different graphs.

15. Open the CloudWatch in the new tab.

16. Click on the Log groups.

17. Click on the /aws/lambda/enrich-orders-function.

18. Click on the Log Stream.

19. You will see the logs of streaming data.

Step 4: Filter Streaming Data with Kinesis Data Analytics

1. Click on the Services.

2. Select the Kinesis from the Analytics.

3. Click on the Analytics Application from the left-hand side
menu.

4. Click on the SQL Applications (legacy).

5. Click on the Create SQL application (legacy) button.

6. Give an application name filter-top-orders.
7. In the ‘Description’ box, paste the following filter-top-

orders.

8. Click on the Create SQL application (legacy) button.

9. Click on the Steps to configure your application.

10. Click on the Configure source stream button.

11. Select the Kinesis Data Stream.

12. Click on the Browse button.

13. Select the enriched-orders. Then, click on the Choose
button.

14. Scroll down. Click on the Discover Schema button.

15. You will see the Raw and Formatted streaming data that were
collected.

16. Click on the Save changes button.

17. Click on the Real-time analytics tab.

18. Then click on the Configure button.

19. Copy and paste the SQL queries from the below code snippet.

CREATE OR REPLACE STREAM "DESTINATION_USER_DATA"

(

 order_id VARCHAR(64),

 user_id VARCHAR(16),

 email VARCHAR(16),

 first_name VARCHAR(16),

 last_name VARCHAR(16),

 total_cost FLOAT

);

CREATE OR REPLACE PUMP "STREAM_PUMP" AS INSERT

INTO "DESTINATION_USER_DATA"

SELECT STREAM "order_id", "user_id", "email",

"first_name", "last_name", "total_cost"

FROM "SOURCE_SQL_STREAM_001"

WHERE "total_cost" >= 100;

20. Click on the Save and run application button.

21. It will take a few minutes. Once it is completed, you will see
the subset of data.

Step 5: Create Kinesis Data Firehose to transform & Deliver the
Final Result

1. Click on the Connect to destination button.

2. Select the Kinesis Data Firehose delivery stream.

3. Click on the Create button.

4. Select the source Direct PUT. Then select the destination
Amazon S3.

5. Give a delivery stream name top-orders-delivery-stream.

6. Scroll down. Select the Enabled.

7. Open the Lambda on the new tab.

8. Click on the Create function button.

9. Enter the name for the function add-new-line.

10. Select the Python 3.8 Runtime.

11. Click on the Change default execution role.

12. Select Use an existing role.

13. Use the Existing role dropdown to select the enrich-orders-
function role you created earlier.

14. Click on the Create function button.

15. Copy and paste code in the lambda function code editor from
the following provided link: https://das-c01-data-analytics-
specialty.s3.amazonaws.com/Labs/new-line-function.py.

https://das-c01-data-analytics-specialty.s3.amazonaws.com/Labs/new-line-function.py

16. Click on the Deploy button to save the changes.

17. Go back to the Kinesis Data Firehose dashboard. Click on the
Browse button.

18. Click on the Refresh button.
19. Select on the add-new-line Lambda function.
20. Click on the Choose button.

21. Set the Buffer size to 1 MB.
22. Set the Buffer interval to 60 sec.

23. Click on the Create button to create an S3 bucket.

24. Give an S3 bucket name ips-s3-example- bucket.

25. Click on the Create bucket.

26. Click on the Browse button.

27. Click on the Refresh button.
28. Select the ips-s3-example-bucket.
29. Click on the Choose button.

30. Click on the Create delivery stream button.

31. Go back to the Kinesis Firehose Delivery Stream dashboard.
Click the Browse button.

32. Click on the Refresh button.
33. Select the top-orders-delivery-stream.
34. Click on the Choose button.

35. Scroll down. Select the DESTINATION_USER_DATA.
36. Then, click on the Save changes button.

37. Hence, the Kinesis Data Firehose is created.

Step 6: Review the Results in the S3 bucket

1. Click on the Services.

2. Select the S3 from the Storage.

3. Click on the ips-s3-example-bucket.

4. Click on the folders.

5. Finally, you can see a file that is uploaded onto the S3 bucket.

6. Select the file. Click on the Download button.

7. Open the download file in any code editor you will see, like
JSON.

8. Hence, you can successfully join, enrich, and transform
streaming data using Amazon Kinesis.

Mind Map

Figure 4-36: Collecting Streaming Data Mind Map

Practice Questions
1. Which AWS resource helps you gather and handle streams

of data records in real-time?

A. Kinesis Data Streams

B. Kinesis Data Firehose

C. Kinesis Data Video Streams

D. Kinesis Data Analytics

2. Which AWS service delivers real-time streaming data to a
destination such as Amazon S3?

A. Kinesis Data Streams

B. Kinesis Data Firehose

C. Kinesis Data Video Streams

D. Kinesis Data Analytics

3. Which AWS service allows you to stream live video from
devices to develop applications for real-time video processing
and batch-oriented video analytics?

A. Kinesis Data Streams

B. Kinesis Data Firehose

C. Kinesis Data Video Streams

D. Kinesis Data Analytics

4. Which AWS service do you use for standard SQL to handle
and analyze streaming data?

A. Kinesis Data Streams

B. Kinesis Data Firehose

C. Kinesis Data Video Streams

D. Kinesis Data Analytics

5. Which are the rappers or containers containing all of the
streaming data you want to load into AWS?

A. Box

B. Queue

C. Shard

D. Pipeline

6. Which of the following assists you in consuming data from a
Kinesis data stream by handling sophisticated distributed

computing tasks?

A. Kinesis Client Library

B. Kinesis API

C. Kinesis Producer Library

D. Kinesis Data Stream

7. Which of the following is characterized as the provider of
correct insights for research utilizing established validation
techniques?

A. Data visualizing

B. Data collection

C. Data handling

D. Data cleansing

8. What are the intelligent data collection methods?

A. Surveys

B. Interviews

C. Mobile devices & Websites

D. Focus Groups

9. What devices are used by enterprises to capture large
volumes of structured, semi-structured, and unstructured
data?

A. Deep Learning

B. Big Data

C. Machine Learning

D. Data Analytics

10. Which of the following is a real-time data input and
processing data storage system?

A. Kinesis Data Stream

B. Kinesis Data Firehose

C. Kinesis Data Analytics

D. Apache Kafka

11. Which of the following is continually created by hundreds
of data sources that generally send in data records in tiny
batches?

A. Data Cleansing

B. Data Handling

C. Data Analyzing

D. Data Streaming

12. Which AWS product simplifies the real-time streaming
collection, processing, and analytics?

A. Amazon S3

B. Amazon SageMaker

C. Amazon Kinesis

D. Amazon EC2

13. Your organization has a standalone Javascript (Node.js)
application that streams data into AWS using Kinesis Data
Streams. You can see that they are utilizing the Kinesis API
(AWS SDK) rather than the Kinesis Producer Library (KPL).
What might be the reasoning behind this?

A. The Kinesis API (AWS SDK) runs faster in Javascript
applications over the Kinesis Producer Library.

B. The Kinesis Producer Library must be installed as a Java
application to use with Kinesis Data Streams.

C. The Kinesis API (AWS SDK) provides greater
functionality over the Kinesis Producer Library.

D. The Kinesis Producer Library cannot be integrated with a
Javascript application because of its asynchronous
architecture.

14. You have been tasked with capturing data from an online
gaming platform to run analytics on and process through a
machine learning pipeline. The data you are ingesting is the
player’s controller inputs in JSON format every 1 second (up
to 10 players in a game). The data must be ingested via
Kinesis Data Streams, and the JSON data blob has a size of
100 KB. What minimum number of shards can be used to
ingest this data successfully?

A. 1 shard

B. 10 shards

C. 100 shards

D. Greater than 500 shards, hence you will need to request
more shards from AWS.

15. You are collecting clickstream data from an e-commerce
website using Kinesis Data Firehose. To send data to the
stream, you use the PutRecord API from the AWS SDK.
What arguments are required when using the API
PutRecord call to deliver data to Kinesis Data Firehose?

A. Data, PartitionKey, StreamName

B. Data, PartitionKey, StreamName, ShardId

C. DataStreamName, PartitionKey, and Record (containing
the data)

D. DeliveryStreamName and Record (containing the data)

CHAPTER 05: DATA COLLECTION AND
GETTING DATA INTO AWS

Introduction
In this chapter, you will learn how to collect data on AWS and how to
decide the best ways to ingest your data into AWS. You will also learn
how to collect data in AWS via a dedicated network or using hardware
appliances and transfer databases using the Database Migration Service
(DMS). You will also learn how to use the Amazon Kinesis family of
services and when each one is most useful. For data interpretation and
the discovery of our data, we can use QuickSight.

Figure 5-01: Steps to Success

Data Loses Value Quickly Over Time

From the graph, data loses value quickly over time. On the left-hand
side, our streaming data or our preventative, predictive, and actionable
data are where our time-critical decisions can be made. If we want fast,
actionable data, then that is where our streaming data lies. We want to
build tools around batch-oriented processes, build out ETL pipelines, or
possibly build business intelligence tools around our data.

Figure 5-02: Data Loses Value Quickly Over Time

Direct Connect, Snowball, Snowball Edge,
Snowmobile
AWS General Rule Of Thumb
AWS has a general rule of thumb. This graph lays out your network
connection speed, the amount of data, and whether to use a managed
or unmanaged service from AWS. The difference between an
unmanaged and managed is that unmanaged uses the CLI, the AWS
command line, or the AWS console to transfer data into AWS. A
managed service is the Direct Connect option, the Snowball family, and

other tools that you can use to move data from one location to another
or from on-premise into the AWS network.

Network
Connection

Amount of Data Method

Less than 10 Mbps Less than 500 GB Unmanaged

Greater than 10 Mbps Greater than 500 GB Managed

Table 5-01: AWS General Rule of Thumb

Data Migration Service (Managed Services To Move Your
Data To AWS)
Hybrid Cloud Storage

The hybrid cloud storage connects your on-premises applications that
require low-latency access or need rapid data transfer to cloud storage.
Hybrid Cloud Storage Using Direct Connect

We have an AWS region and a Direct Connect location. The AWS cages
are live, and all networking routers and connectivity capabilities lie
within the Direct Connect location. This can be a single physical
location or can be a partner location. The dedicated lines are
established from an AWS region into the AWS physical networking
hardware. These dedicated lines can be either one or 10 gigabits per
second. You as a customer have your customer on-premises location,
your hardware, and your router that you want to set up to connect into
the AWS Direct Connect location; AWS can own this, or it can be a
partner location, and you would make sure that you have all of the
hardware set up to connect into the AWS cage. You have a Direct
Connection from your customer location into the AWS region through

the Direct Connect location. It is a dedicated hard line into AWS. Once
you have established a Direct Connect connection, you can either
connect into the AWS public zone, this is public services like S3 and
DynamoDB or connect into services hosted within a VPC like EC2
instances Redshift, or RDS. This allows you to connect directly into an
AWS region and not have to traverse the internet. You can maximize
your latency and how fast you can move data from your location, from
your data center, from your on-premises infrastructure into AWS.

Figure 5-03: Hybrid Cloud Storage Using Direct Connect

Online Data Transfer

It makes it simple and easy to transfer your data into and out of AWS
via online methods. AWS Data Sync allows you to automate moving
data between your on-premises storage into AWS, into S3, EFS, or FSX,
which is a windows file server. You can use AWS Data Sync to transfer
data at speeds up to 10 times faster than some of the other open-source
tools that you can use. You can use Data Sync for one-time data
migrations or have recurring data processing workflows. You can also

automate the replication and the data protection and recovery of your
data. It is a great tool to set up automation for moving data between
various locations into AWS. Several different transfer families allow you
to transfer directly into and out of S3. You can use FTP, SFTP, or FTPS.
S3 Transfer Acceleration allows you to maximize your available
bandwidth regardless of the distance from your customers into S3.
Kinesis Data Firehose is a simple way to load streaming data into AWS.

Figure 5-04: Online Data Transfer

Snowcone is the newest and the smallest member of the AWS snow
family that allows you to collect, process, and move data to AWS online
with AWS Data Sync.

EXAM TIP: Use Snowcone to collect, process, and move data to
AWS online with AWS DataSync.

Offline Data Transfer – The Snow Family

This introduces the snow family, which makes it simple to get your data
into and out of AWS via offline methods.
Snowcone

You can load data to Snowcone through Wi-fi wired 10 GbE networking.

You can then ship the device with data to AWS for offline data transfer.
Snowball

Used for petabyte-scale data transport with import and export to S3.
Snowmobile

An exabyte-scale data transport solution uses a secure semi 40-foot
shipping container to transfer large amounts of data into and out of
AWS.
Snowball Edge

It is local storage and large-scale data transfer. Also, local Lambda and
EC2 instances compute, and AWS IoT Greengrass.

Figure 5-05: The Snow Family

Which Solution Should you Use?

Scenario
Data Migration

Reason

Plan

You need a consistent,
high throughput

connection to transfer
data in and out of AWS
from your on-premise
databases. The transfer

speed can never fall
between 1 Gbps.

Direct Connect
Connection

Direct connect gives
customer locations a

dedicated fiber channel
with high throughput

and low latency onto the
AWS backbone. You can
choose from 1 Gbps to 10

Gbps connections.

Your team manages a
fleet of IoT devices that
monitors engine parts
on a remote deep-sea

fishing rig with
intermittent internet

connectivity. These IoT
devices need to send

and process data using
Lambda.

Snowball Edge

You can use these
devices for data

collection and processing
in environments with

intermittent
connectivity.

Table 5-02: Which Solution You Should Use

EXAM TIP:
Moving Mass Amounts of Data – Unmanaged and managed services
Data Migration Services – Hybrid Cloud Storage, Online Data Transfer, and
Offline Data Transfer
Direct Connect – Use 1 Gbps to 10 Gbps dedicated networking
The Snow Family – Snowball, Snowball Edge, and Snowmobile

Database Migration Service
1. Data Migration

Easily and securely migrate widely used commercial and open-source
databases and data warehouses into the cloud.

2. Replication

Easily replicate your databases and data warehouse between two
locations.

3. Fully Operational

Databases stay fully operational during the migration, minimizing
downtime for the applications using them.

DMS Use Cases
1. Migrate Applications

Migrate business-critical databases, migrate from Classic to VPC, costly
and license-driven data warehouse to Redshift.

2. Upgrade

With DMS, you can upgrade versions of your database software easily
with no downtime.

3. Achieve Old Data

You can migrate historical data to a more cost-efficient storage solution
while still retaining the Solution.

4. Migrate Datastores

You can migrate from NoSQL to SQL, SQL to NoSQL, and SQL to SQL.

Supported Migrations
The supported migrations that DMS offers are we can transfer data
from one of the database engines on the left-hand side to any of the

database engines on the right-hand side, as shown in the following
figure. We can migrate all our data into S3. Whenever we use S3 as the
target, we can store the data in a CSV format, or for more compact and
faster query options, we can use the Apache Parquet format. We can
also use DMS to migrate our data from an existing database onto S3.

Figure 5-06: Supported Migrations

Migrations
We define the source endpoint, where the data comes from, and we
have a target endpoint. DMS supports heterogeneous and homogenous
migrations.

Figure 5-07: Migrations

Mass Amount Of Data
Use a Snowball device to:

Store 80 TB storage, 10 GB network
User interface similar to S3
All data is encrypted end-to-end

Replication
Leverages “change data Capture,” which pulls just the changes from the
source and delivers them to the destination.

1. Cross-Region Replication

It gives you the ability to create cross-region replications of your
database for applications running in other regions.

2. Offload Analytics

You can replicate data to the cloud and run analytics on your cloud
databases rather than the original database that users interact with.

3. Keeping Data in Sync

Sometimes you need to keep your data in sync between testing, staging,
and production environments.

EXAM TIP:
Database Migration Service – managed service for migrating databases
When to use DMS – migrations, upgrade, achieving data and replications
Supported Migrations – heterogenous and homogenous migrations
Replications - Cross-Region Replication, Offloading Analytics, and Keeping
Data in Sync

Data Pipeline
Data Pipeline automates the movement and transformation of your
data. It helps you process and move data between AWS compute
storage services and on-premises data sources. You can create an ETL
workflow to automate the processing and movement of data at
scheduled intervals.

Creating Data Pipeline
Whenever we create a Data Pipeline, we have several templates that can
be chosen. We can create our custom templates and move data from
any input source to any output source and transform it before it lands
on its final destination.

Figure 5-08: Creating Data Pipeline

Some Overlap With Lambda
There are several areas where the event-driven pipelines are overlapped
between Data Pipeline and Lambda.

Figure 5-09: Some Overlap With Lambda

Key Concepts

Data Pipeline is a container that consists of four parts that include data
nodes, activities, Precondition, and schedules. Data nodes define where
the data is coming from; this can be DynamoDB, S3, RDS instance or
some on-premises database, or from Redshift. Activities are a way for
the components of the Pipeline to define work to perform.
Preconditions are conditional statements that must be true before the
activity is run.

In schedules, we set up when we want the Data Pipeline to run AWS
provisions and terminates the EC2 instances or the EMR clusters that
do the transformation and the processing and moving the data from
one source to another. When it is finished, it terminates automatically.

Figure 5-10: Key Concepts

1. The end destination of your data.
2. An action that Data Pipeline initiates on your behalf as part of

the Pipeline.
3. The preconditions that must be met before the activity is run:

DynamoDBDtataExists

DynamoDBTableExists
S3KeyExists
S3PrefixExists
ShellCommandPrecondition

4. Defines when your activity run and the frequency with which
the services expect your data to be available.

Data Pipeline for On-premises
We can run Data Pipeline for on-premises by installing the task runner
on a server in our local network. We can access the local database
securely and pull the Data Pipeline for the next task to run. When it
recognizes a task to run, it runs that task on the task runner installed
on-premises.

Figure 5-11: Data Pipeline for On-premise

Data Pipeline for On-premise - Use Cases
On-premise Database for Analytical and BI Tools

Example: Move tables between the production database running on
RDS and a non-production MySQL database running on-premises for
BI purposes.
Remotely executing stored procedures

Example: Utilize stored procedures and run them on your scheduled
tasks for your on-premises databases.

EXAM TIP:
Data Pipeline - Automate the movement and transformation of your data
Key Concepts – Datanodes, activities, preconditions, schedules
Using Pipeline for On-premise – Installing a task runner that polls data
Pipeline
Use Cases – Moving data in databases and remotely executing stored
procedures

Lambda, API Gateway, and CloudFront
Definitions
Lambda

An event-driven service that allows you to run your code in AWS
without managing infrastructure.

API Gateway

A serverless API that can be used to create RESTful, HTTP, and
WebSocket APIs.

CloudFront

A content delivery network that allows you to deliver data, videos,
applications, and APIs with low latency.

Lambda Events and Integration
We have event data that comes out of the actual event that triggers the
Lambda function. The event data is passed into the Lambda function,
and then the Lambda does some type of processing. Then results come
out of that Lambda function, and these results either land on some
destination, or it can trigger another event. After each of these events,

either a new event is triggered or lands on some final destination. Many
different things can trigger an event to talk to Lambda, like S3 events.
When a new file is added or when a new file is removed, things like
DynamoDB. When a new row in the DynamoDB table is added or
deleted, any of those events occur. When streaming data is coming
through Kinesis, we can take that data and do some processing. Before
the data lands into S3 or on our final destination, we can do some type
of processing. You can also trigger events through Redshift whether a
new table is created or new data comes into Redshift and AWS IoT.
AWS IoT allows us to manage IoT devices that are spread out
throughout the edge. We can also have Elasticsearch. Elasticsearch also
triggers an event, and the same with a data pipeline.

Figure 5-12: Lambda Events and Integration

Lambda – Use Cases
Real-time Log Processing

Example: You have a fleet of servers that are continuously creating logs.
Use Lambda and Kinesis to capture, process, transform, and store those
logs for real-time applications and notifications.

Creating ETL Pipelines

Example: Trigger Lambda functions from various events and processes
the incoming data. Once the data is transformed, you can use Lambda
to load that data into the datastore.

Creating Cron Jobs

Example: Set up Lambda functions to start daily batch jobs that are
currently being done manually.

Lambda Limits

Resource Limit

Function timeout 900 seconds (19 minutes)

Invocation payload (request and
response)

6 MB (Synchronous)

256 KB (Asynchronous)

Invocation frequency per region
(requests per second)

10 x concurrent executions

(Synchronous – all sources)

(Asynchronous – non-AWS
sources)

Unlimited (Asynchronous – AWS

service sources)

Table 5-03: Lambda Limits

Serverless Architectures
These services in action can trigger things like Lambda functions. You
can have an application that runs on CloudFront that gets the data from
S3 or is served out through S3 via edge locations. It can trigger API
Gateway endpoints that, in turn, trigger Lambda functions. These
Lambda functions can communicate with Cognito. You can use Cognito
for the login and authentication services. In addition, you can
communicate back and forth to S3 and the same with DynamoDB.
These architectures are pretty much endless to trigger endpoints
through API Gateway, communicate with Lambda functions, do things
like login users, get data back and forth from S3, and create data stores
within DynamoDB.

Figure 5-13: Serverless Architecture

Assume you have some application logs, and you want to stream those

into Kinesis streams. You can stream that Data into Kinesis streams
that use Firehose to store it off into S3. Then you can assemble all your
logs into a single location. You can use things like Kinesis data analytics
to run SQL queries on those log files and set up different triggers or
notifications if certain thresholds are hit.

Then, you can use Kinesis Data Firehose to trigger a Lambda function
that communicates with CloudWatch or a simple notification service to
trigger notifications. You can store that data off into S3 and perform the
transformation, and set up ETL pipelines to finally store that data off
into S3. Also, you can store that data on Elasticsearch, Redshift, and
DynamoDB. In addition, you can trigger more events and spin up more
AWS services. Furthermore, you can pass that data through or have
that data land in some final destination.

Figure 5-14: Serverless Architecture

Kinesis and Lambda Integrations

If we have some data producers and we are streaming that Data into
Kinesis streams, we can trigger an event with Lambda. Consider some
data transformation, or consider we want to have it delivered to
DynamoDB. We can set up a Lambda function that does that for us.
Lambda will trigger a function to fire for that particular shard. We can
have multiple Lambda functions associated with a Kinesis stream event
to have up to five.

Figure 5-15: Kinesis and Lambda Integrations

Kinesis and Lambda Scaling
When there is a high traffic volume, we want to process the records as
fast as possible. Since only one Lambda function and vocation happens
at a time, we need to figure out a way to scale up our Kinesis stream to
handle more data. We can do this by creating more shards. That is how
we scale up our Kinesis data stream when more data starts to come in.
For every shard, a single Lambda function is triggered. Therefore, we

will have multiple Lambda invocations that occur. The way that we
scale up our shards is by using the update shard count API call. Another
way to scale the Kinesis data stream is by splitting our shards. It creates
two new child shards by splitting the partition keyspace of the parent
shard.

We have two parent shards, and we have four child shards. Lambda will
not start receiving any records from the child shards until all of the
records have been processed from the parent shard. Therefore, we have
our parents’ shards, splitting them into separate child shards. Lambda
invocations are not going to occur until all of the records are out of the
parent shards. Then it will start processing the child shard records.

Figure 5-16: Kinesis and Lambda Scaling

EXAM TIP:
Lambda Limits – Function timeout, invocation payload, invocation frequency
Serverless Architectures – using these services together can create serverless
architectures

Lambda and Kinesis – Integrating Kinesis and Lambda and you can scale up
Kinesis by using parent and child shards.

Comparing our Options
Time Required To Move Data Into AWS
If we have a small amount of data, consider 1 terabyte, 10 terabytes, 100
terabytes when moving petabytes of data; depending on your network
bandwidth will determine how fast that data can be moved into AWS.
As your data grows, you can start to see how long it would take to move
an increasing amount of data depending on your network speed. A
petabyte or 10 petabytes of data with a hundred megabits per second
network bandwidth or one gigabit per second could take years to move.

Figure 5-17: How Long Will It Take

Choosing A Service
We can use AWS Data Sync, which is great for the rapid transferring of
data. We can schedule regular intervals for the data to be moved into
AWS. If we want to transfer data over long distances into S3, we can
utilize S3 Transfer Acceleration. This is the go-to service for
heterogeneous migrations and homogenous migrations from one
database platform to another if we need to migrate databases. Data
Firehose is great at taking your streaming data and loading it into its

final destination, whether S3 Redshift, Splunk instances, or
Elasticsearch. We can transform the data before it lands on its final
destination using AWS Lambda. Offline data migrations are where
Snowball, Snowball Edge, and Snowmobile come into play. We can load
our data onto a physical device, ship it back to AWS, and then with
their network capabilities; they just load that data directly into S3 for
us.

Figure 5-18: Choosing a Service

Mind Map

Figure 5-19: Mind Map

Practice Questions
1. Which of the following makes it simple and easy to transfer your data into and out

of AWS via online methods?
A. Online Data Transfer
B. Offline Data Transfer
C. Both of them
D. None of them

2. Which of the following is used to collect, process, and move data to AWS online

with AWS DataSync?
A. Snowmobile
B. Snowcone
C. Snowball
D. Snowball Edge

3. Which of the following is used for petabyte-scale data transport with import and

export to S3?
A. Snowmobile
B. Snowcone
C. Snowball
D. Snowball Edge

4. Which of the following is an exabyte-scale data transport solution that uses a

secure semi-40-foot shipping container to transfer large amounts of data into and
out of AWS?
A. Snowcone

B. Snowball
C. Snowball Edge
D. Snowmobile

5. Which of the following is a local storage and large-scale data transfer, local
Lambda and EC2 instances compute, and AWS IoT Greengrass?
A. Snowcone
B. Snowball Edge
C. Snowball
D. None of them

6. The Snow Family includes ------------------.

A. Snowball
B. Snowball Edge
C. Snowmobile
D. All of them

7. AWS Glue Version 0.9 and 0.1 are billed in ------------ increments with a 10-minute

minimum.
A. 1-second
B. 0.1-second
C. 0.01-second
D. None of them

8. Direct Connect Uses ------- Gbps dedicated networking.

A. 1 Gbps to 10 Gbps
B. 0.1 Gbps to 10 Gbps
C. 1 Gbps to 100 Gbps
D. 0.1 Gbps to 100 Gbps

9. Which service easily and securely migrates widely used commercial and open-

source databases and data warehouses into the cloud?
A. CloudWatch
B. Database Migration Service
C. AWS Glue jobs
D. None of them

10. Replication easily replicates your databases and data warehouse between how many

locations?
A. 1
B. 2
C. 3
D. None of them

11. Which of the following gives you the ability to create cross-region replications of
your database for applications running in other regions?
A. Offload Analytics
B. Keeping Data in Sync
C. Cross-Region Replication
D. None of them

12. With the help of --------------------, you can replicate data to the cloud and run

analytics on your cloud databases rather than the original database that users
interact with.
A. Offload Analytics
B. Keeping Data in Sync
C. Cross-Region Replication
D. None of them

13. When should you use DMS?

A. Migrations
B. Upgrade
C. Achieving data and replications
D. All of them

14. Snowball device is used to ----------------.

A. Store 80 TB storage, 10 GB network
B. User interface similar to S3
C. All data is encrypted end-to-end.
D. All of them

15. Supported Migrations include -----------------.

A. Heterogenous migrations
B. Homogenous migrations
C. Both A and B
D. None of them

CHAPTER 06: AMAZON EL ASTIC MAP
REDUCE (EMR)

Introduction
Elastic Map Reduce or EMR plays a huge role in data analytics,
processing, and big data frameworks. We can use the EMR architecture
and the Hadoop framework to process and analyze massive amounts of
data. Log analysis, web indexing, data warehousing, machine learning
(ML), financial analysis, scientific modeling, and bioinformatics all use
Amazon EMR for data analysis. It also supports Apache Spark, Apache
Hive, Presto, and Apache HBase workloads, connecting with Hive and
Pig, free source Hadoop data warehousing technologies. Pig provides a
high-level interface for scripting Map-Reduce tasks in Hadoop, whereas
Hive utilizes queries and analyses. This service is expensive, and it uses
a lot of computing power, but it gives you the ability to process huge
amounts of data in a short amount of time.

Figure 6-01: Data Analysis with EMR

Apache Hadoop and EMR Software Collection
Map Reduce
Map-reduce is a technique that data scientists can use to distribute
workloads across many different computing nodes to process other data
and get the information back quicker than just on a single node.

Let us take a look at an example of Map reduce. Imagine if someone
shows you the image given below and asks you the question, Can you
tell me how many Google cloud and AWS icons there are? Disregard
any of the Azure icons. If you take a few minutes and count them, you
could tell the answer, but let us imagine that there were hundreds of
thousands of these. Your eye would not be able to determine how many
there are. Hence, we could create a Map reduce function.

Figure 6-02: Counting AWS and GCP icons

Our Map reduce function will catch all AWS icons and the GCP icons
but disregard any Azure icons.

Figure 6-03: Map-Reduce Function

With a Map reduce function; the workload is distributed across many
different nodes. The orange node is going to process some part of the
information. The red node will process some other part of the
information, and the green node will process the remaining data. In
Map-reduce, the workload is split evenly across these nodes. Therefore,
anyone can use the processing power individually. It can be scaled to

hundreds and thousands of nodes if needed.

Figure 6-04: Nodes

Once the orchestration of breaking the data apart has occurred, each of
these nodes will apply their map phase, and each node counts the
various icons. It is known as the map phase.

Figure 6-05: Map Phase

Once the map phase is complete, then the reduce phase happens. In
this case, all of the data is assembled on a single node where reduce
determines whatever needs to be processed. In this case, it counts the
number of icons.

Figure 6-06: Reduce Phase

Now you can see automatically AWS has 50 and GCP has 45 icons.
Hence, if you knew that picture of all the icons, you would not have
been able to tell that just right off the bat. This is known as the reduce
phase.

Map reduce means breaking apart a processing task over many different
nodes, having a map phase where some processing, counting, filtering,
or aggregation happens, and then the reduce phases where all of that
data is assembled onto a single node. It can be multiple nodes, but in
the case of EMR, it is built on a single node, and the output of our Map-
reduce function is determined.

Distributed File Systems
Imagine that you have two huge files with tons and tons of data. You
can imagine these being gigabyte files or many megabyte files within a
distributed file system. You have a primary node, also known as the
master node.

Figure 6-07: Distributed File System (i)

These files are broken up on a distributed file system, but they look like
single files on the primary node. Hence, imagine that we have some
secondary nodes or slave nodes. These files are split up across the
secondary nodes, and not only are they broken up across the secondary
nodes, but they are also replicated. That means that each secondary
nodes have multiple replication or copies of these broken-up blocks or
broken-up files. It allows us to lose one of the secondary nodes, but we
still have a copy of the data. It is what makes distributed file systems so
resilient and powerful.

Figure 6-08: Distributed File System (ii)

Hadoop Distributed File System (HDFS)
Hadoop Distributed File System is open-source software that allows you
to operate a distributed file system over several computers to tackle
challenges requiring large amounts of data. HDFS is meant to run on
low-cost hardware and is extremely fault-tolerant. HDFS is a file system
that allows high-throughput access to application data and is well

suited to applications with huge data collections. The problem with
setting up an HDFS cluster so it requires a lot of maintenance and
management. This is where Elastic Map reduce comes in.

EMR
Elastic Map reduce is a fully managed AWS service that allows you to
spin up Hadoop ecosystems. Not only can you store data on HDFS, but
you have some other storage options as well. We also have the EMR file
system or EMRFS. This means that the Elastic Map reduce cluster
shares the data with S3. We also can store it on the local file system.
This can be an instance store or on EBS volumes.

Hadoop is not the only piece of software that runs on EMR. There is a
plethora of applications and open-source software tools that you can
pre-install or install and configure yourself on EMR. You want Presto,
Jupiter Notebooks, or Hue installed. When we say install and configure
yourself, that means just checking a checkbox. You check a checkbox,
and EMR takes care of the installation. They also take care of the
maintenance. They make sure that it is up to date, and they ensure that
all of the software systems can communicate with one another.

Each of these software systems does different things. Typically, Apache
Spark is for ETL and big data processing. Presto is a SQL query engine
that we can use. We also have Jupiter notebooks to share code or write
Apache Spark programs right within the EMR cluster. Apache Pig is for
large data analysis. We also have Zookeeper, HBase Hue, and the
Hadoop distributed file system. These are not the only software that
can be installed onto EMR. There are tons of them, and whenever you
create your cluster, you choose what you want to install.

Figure 6-09: EMR Software Collection

Note: Hive is another ETL service.

Quick Options

If we look at what it looks like in the console, we have to give our
cluster name, and we point to an S3 folder where we want to have the
logging.

Figure 6-10: General Configuration

We then choose the software configuration. These configurations are
constantly updating the versions of the software as well.

Figure 6-11: Software Configuration

We then tell it how many nodes we want to have running the size. In
addition, what type of EC2 instance that we want to have running. We
can configure it to be specific for each primary node and each type of
secondary node.

Figure 6-12: Hardware Configuration

We can configure the security for this EMR cluster to access it via SSH
or some other type of way. Finally, we have the security access where
we just set up an SSH key if we want to SSH into the primary node, and
we have some roles that need to be set up in IAM. Therefore, we can
interact with Redshift, S3, DynamoDB, and any other services we want
to interact with.

Figure 6-13: Security and Access

Advanced Options

We can choose which software we want to have installed onto our EMR
cluster in the advanced options.

Figure 6-14: Software Configuration

As we are setting up our EMR cluster, we can also set up steps, which is

a process or a Map-reduce function, or an Apache Spark program, a
Hive query, any Java jar that we want to run on the EMR cluster, you
can run it on an EMR cluster. We can set up these steps to submit a
unit of work to that cluster. It needs to accomplish some tasks. It needs
to go through and see how many AWS icons there are, how many GCP
icons there are, it needs to go through a terabyte of log files, it needs to
filter through billions of customer reviews, or it needs to do some
machine learning analysis on terabytes of brainwave data.

Figure 6-15: Steps (optional)

EXAM TIP:
Map Reduce is the splitting, mapping, shuffling, and reducing big

data to produce the desired output.
Distributed File Systems are how large files are split and replicated

across many nodes.
HDFS is an open-source Apache Hadoop software that makes it easy

to run distributed file systems.
EMR is a fully managed Hadoop cluster in AWS to store, analyze

and process big data.
EMR storage options include HDFS, EMR file system (EMRFS), and

local file system.

EMR Architecture
Introduction
The entire cluster is spun up in a single availability zone. Every single
EMR cluster has a primary node, or it can have three primary nodes.
Hence, it is either a single primary node or three primary nodes. This
primary node manages all of the components in the distributed
applications. The core nodes come into play when a job needs to be
submitted or some processing or Map reduce tasks. The primary node
manages these core nodes. The last part of the EMR architecture is our
task nodes. Task nodes are optional. They add power to perform
parallel, computational tasks on the data, and they help the core nodes.

Figure 6-16: EMR Architecture

Primary Node Features
Single or Multi-Primary Nodes

Whenever you launch a cluster, you will have the option to choose
between one primary node and three primary nodes. You will only
have a single primary node most of the time, but now you can also have
multiple primary nodes. You would have numerous primary nodes
because you do not have a single point of failure. Therefore, if one
master node fails, the cluster uses the other two master nodes to run
without interruptions. EMR automatically replaces the primary node
and provisions it with any configurations or bootstrap actions that need
to happen. Hence, all it does is remediate that single point of failure.

Manages the Cluster Resources

The primary node also manages the cluster resources. It coordinates the
distribution of the parallel execution for the different Map reduce tasks.

Tracks and Directs HDFS

The primary node also tracks and directs the HDFS. The primary node
knows how to lookup files and track data on the core nodes.

YARN Resource Management

The primary node is also responsible for the YARN resource
management. EMR uses YARN (Yet Another Resource Negotiator) to
manage cluster resources for multiple data-processing frameworks.

Monitors Core and Task Nodes Health

The primary node tracks the status of jobs submitted to the cluster and
monitors the health of the core and task nodes.

Core Node Features
Run Tasks for the Primary Node

The primary node manages core nodes and runs Hadoop Map reduce
tasks, Hive Scripts, and Spark executors.

Coordinates Data Storage

The core node is also responsible for coordinating data storage. The
core nodes know how and where to store the data. This data is stored
on HDFS or EMRFS. The DataNode daemons run on the core node.

Multiple Code Nodes, Only One Core Instance Group

We can have multiple core nodes but only one core instance group.
These multiple core nodes are made up of multiple EC2 instances. This
makeup the instance in group or fleet from.

Task Node Features
Optional Helpers

Task nodes are optional and can add power to perform parallel
computation tasks on data like Map reduce tasks and Spark executor.

No HDFS or DataNode Daemon

Task nodes do not store data in HDFS. It is not used as a data store and
does not run the Data Node daemon.

Added and Removed from running clusters

Task nodes can be added and removed from the core nodes to ramp up
extra CPU or memory for compute-intensive tasks.

Single Availability Zone Concept
The EMR clusters only reside in a single availability zone. The main
reason behind the single availability zone concept so the nodes in the
cluster can communicate faster. It means that they do not have to
traverse as much internet or the AWS backbone. They are closer
together, and they are in the same availability zone. It means block
replication can happen more quickly. Hence, you can find your files
faster when finding them on HDFS. In addition, the communication
between nodes happens faster. Hence, whenever core nodes are
processing back and forth, they can communicate faster. In addition,
the access to metadata and the ease of launching a replacement cluster
is faster if one of the nodes goes down or has some overload.

EMR Storage Options
The storage layer contains the many file systems that your cluster use.
These are the basic storage options you have with EMR, and you will
choose one of these whenever you are setting up your EMR cluster,
whenever you are trying to process and store your data onto either EMR
or use S3 for your input and output of your data.

File System
How to
Access

Description Usage

Local File
System

(Instance
Storage)

˜/

It is located on
disks that are

attached to the
host machine.
Size/speed is

determined by
instance type.

They are used
for very high

I/O
performance

and high IOPS
at low cost. Best

used for
temporary data
(caches, buffers,

scratch data).

Local File
System

(EBS Volume)

˜/

Used to extend
your HDFS, but

these EBS
volumes are
ephemeral.

It is used to add
more storage for

HDFS.

Hadoop
Distributed
File System

(HDFS)

hdfs://

Fast but
ephemeral,
distributed
storage for

EMR.

Best used for
caching the

results produced
by intermediate
job-flow steps.

Elastic Map
Reduce File

System
(EMRFS)

s3://

Feature-rich
persistent

storage. Read
and write files

from EMR

Best used for
persistent store
and S3 features
that are needed,
like server-side
encryption and

directly to S3. consistency.

Table 6-01: EMR Storage Options

EXAM TIP:
EMR architecture consists of the primary core and tasks nodes.
Primary nodes manage resources, track and direct HDFS, and

monitor core and task nodes' health.
Core Nodes run jobs as well as stores data.
Task Node is used for extra compute power to help core nodes.
The single availability zone concept means EMR cluster instances

are all in the same AZ.
EMR storage options include HDFS, Local File System (instance

store and EBS), and EMRFS (integrated with S3).

EMR Operations - Transient vs. Long-Running
Transient and long-running EMR clusters are the two types of EMR
clusters.

Transient Clusters
If you set your cluster to terminate automatically, it will do so after
completing all the steps. It is a Transient Cluster. Transient clusters are
computed clusters that shut down and stop billing after completing the
process.

Let us assume that we have some tasks that need to run every Friday of
every week, and we need to produce some graph or metric to show our
boss or the company’s CEO. We have to run some EMR clusters to
process the data. Let us assume that this analytic process needs to show
the number or the percentage of users using your application and the
type of operating system they are using. Therefore, the log files that

come in from requests from all of your users have this particular
operating system that they are using to access your application, and all
of that is stored into S3.

Figure 6-17: Transient cluster

We could create a transient EMR cluster.

Figure 6-18: Transient EMR cluster

1. AWS CLI can create the EMR cluster, the API, or right within

the console.
2. A degree is used within an EMR cluster for a unit of work. It

needs to accomplish some tasks. We could then create a Hive
script and run this as a step within our EMR cluster.

3. Hence, this Hive script will read the log data stored in S3. It is all
of the access logs with information about all users and what OSs
they were using.

4. We can then use the Hive script to assemble the data, determine
what OSs they were using, and then return the percentage of
users using that particular operating system.

5. We can output the results into an S3 bucket.
6. Once all of this is done, every Friday, this is going to, and then

once it is complete, we will terminate the EMR cluster. It is what
a transient cluster is. As soon as the process and job run, the
cluster is removed.

If we look at what this looks like in the console, we can look at the
steps. Steps are a unit of work that you can submit with your cluster.
We can choose from these different settings shown in the image below.
We can choose a Hive program, a Pig program, a Spark application, a
custom jar, or any other streaming program. Let us assume we select
the Hive program and add that step.

Figure 6-19: Select a Step

We can add the location for the Hive script. We can tell where the
input data is what S3 bucket the input data is in. We can tell it where to
store the output for the Hive query, and then we can also select any of
the options for the action on failure, i.e., whether to terminate the
instance if it fails, or go ahead and continue running the example if it
fails.

Figure 6-20: Give details

Here, it says that put the cluster in a waiting state after the last step
completes or auto terminates the cluster.

Figure 6-21: After the last step completes

Long-Running Clusters
If you set up the cluster to continue operating after processing is
completed, the type of cluster is known as a long-running cluster. Long-
running allows you to communicate with the cluster after it has
completed its operations, but it requires manual shutdown.

Considerations
Transient Cluster

The total number of EMR processing hours per day is less
than 24, and you can benefit from shutting down your cluster
when it is not being used.
You are not using HDFS as your primary data storage
(instead, you are using EMRFS with S3).
Your job processing is intensive, iterative data processing.

Long-running Cluster

You frequently run processing jobs where it is beneficial to
keep the cluster running after the previous position.
Your processing jobs have an input-output dependency on
one another.
It is more cost-effective to store your data on HDFS instead of
S3.
You have a requirement of higher performance I/O HDFS
provides.

EXAM TIP: If you set your cluster to terminate automatically, it will
do so after completing all the steps. If you set up the cluster to
continue operating after processing is completed, the type of
cluster is known as a long-running cluster. This is known as
Transient Cluster.

EMR Operations - Choosing an Instance Type

Whenever we provision an EMR cluster, the instance size of our nodes
is important because we might have workloads that are CPU intensive.
We might have some that are input-output or memory intensive.

You can choose many different instances. Whenever we choose an
instance type, we prefer it either for the primary node or for the core of
task nodes. We can bunch core and task nodes together because the
primary node will not be a super compute-intensive machine like the
core and task nodes will be.

Choosing an Instance Type
Primary Nodes

Primary Nodes does not have large computational
requirements.
For clusters with 50 or fewer nodes, you can use the M5
family.
For clusters with greater than 50 nodes, you can use the M4
family.

Core and Tasks Nodes

Depends on the type of processing.
For general purposes, the balance of CPU, disk space, and
I/O, you can use the M5 family.
For Batch Processing, HPC, or CPU-based machine learning,
you can use C4, C5, and Z1d families.
For Graphics processing or GPU-based machine learning, you
can use G3, P2, and P3 families.
For spark applications (in-memory caching), you can use R4
and R5 families.
For Large HDFS and Map reduce jobs requiring high I/O
performance and high IOPS, you can use H1, I3, and D2
families.

EXAM TIP: AWS limits you to 20 EC2 instances per region. You can

request a limit increase on that by contacting support.

EMR Operations - Choosing the Right Number
of Instances
Pairing the best instances with the right number of instances will help
us in our EMR cluster to handle any workload and amount of data that
needs to be processed. It is important to understand that a little cluster
will be slow, and a big cluster will incur unnecessary costs. Therefore, it
is important to get this number right as you are creating EMR clusters,
tuning your EMR clusters, and processing and sorting data from EMR.

Choosing the Right Number of Instances
Primary Node

We can have just one primary node, or we can also have three
primary nodes. It is a newer feature that helps customers
maintain high availability for their primary node. AWS will
detect that the traffic will flow through the new primary node
if a primary node goes down. The primary node will be torn
down, be terminated, and will spin it back up, a new primary
node will come online.

Core and Task Nodes

When choosing the right number of instances for your core
and task nodes, you need to find out if you will be doing a lot
of processing, i.e., running task, or are you going to be storing
huge data in HDFS? If you are going to be holding huge data,
which storage option will you be using? Will you be using
EMRFS, HDFS instance store, EBS volumes for HDFS, or will
you be using a combination of instance stores in EBS? Hence,
the right number of nodes depends on your data.

We know that data is replicated across the nodes. It means that if you
have very, very large files, then those files are copied across multiple
instances. Hence, you need to consider large files and make sure that
you have enough room on each of the dedicated models to store those
replicated files.

It can adjust the replication factor depending on how many nodes you
have. By default, within EMR, if the number of core nodes is ten plus,
the replication factor is three. If you have four to nine nodes, then the
replication factor will be two, and if you have one to three core nodes,
then the replication factor will be one.

You can override the default replication factor in the software settings
upon cluster launch or later in the hdfs-site.xml file.

HDFS Capacity Guidelines
AWS gives us guidelines on calculating the HDFS capacity of a cluster:

EMRFS
HDFS (instance store or EBS) for high I/O requirements.

It depends on whether we are using EMRFS to store our data or using
HDFS to store our data. If we are using HDFS, we are using instance
storage or EBS volumes or some combination of both, and we would
use HDFS over EMRFS if we have a high input-output requirement.
Hence, HDFS is going to be a bit faster with higher input-output rather
than EMRFS because that data is stored onto S3 rather than on the
Hadoop cluster.

For example, we have high input-output requirements. That means we
are going to use HDFS. We need to store three terabytes of data on the
HDFS cluster. Whenever we are creating our EMR cluster within the

console, we can choose the master node sizes, the core node sizes, the
task node sizes, and the number of instances that we want to run. You
can also see that we can choose a purchasing option, either on-demand
or spot.

Figure 6-22: Multiple options for the instance

Assume we are using an on-demand instance. If we select the instance
types for the core, we can see the various instance types that we can
choose from.

Figure 6-23: Instance types for core nodes

Let us assume that we choose the I3 extra-large. It is going to have 950
gigabytes of SSD. If we multiply that by five, it will have a total of five
times 950 gigabytes of storage to store all of the HDFS data.

Figure 6-24: Choosing the instance I3x.large

We know that core node are the only nodes that store data. Task nodes
are used for extra processing power. We have 4.75 terabytes of data that
we can store, and since we chose five nodes, the replication factor by
default is two. If we calculate the HDFS capacity, it will be 2.375
terabytes, which is not large enough for the three terabytes of data.
Hence, the HDFS capacity is not enough space. Therefore, it is
important to consider the replication factor and how much data you
need to store across your nodes.

Figure 6-25: Calculating HDFS Capacity

To alleviate that issue, we go back into the console. To add more
storage for our HDFS cluster, we have a couple of options. We can add
more instances, or we also have the option of adding EBS storage.
Hence, we can either make it ten instances or add extra EBS volumes to
add more room onto our HDFS file system, and we can also increase the
size of the EBS volumes. We also have the option of just changing the
core instance types. We can change them to a specific instance type
with more instant storage data. Therefore, those are our three options.

Figure 6-26: Add EBS volume

AWS suggests using a smaller cluster of larger nodes, and there are a
few reasons behind it. It reduces the failure possibilities. If there are
fewer moving parts or fewer nodes, there are fewer chances of nodes
failing. It also reduces the amount of maintenance. Less moving parts
means less maintenance to ensure that the cluster is working properly.

EXAM TIP: By default, within EMR, if the number of core nodes is
ten plus, the replication factor is three. If you have 4 to 9 nodes,
then the replication factor will be two, and if you have 1 to 3 core
nodes, then the replication factor will be one. You can override the
default replication factor in the software settings upon cluster
launch or later in the hdfs-site.xml file.

EMR Operations - On-Demand and Spot
Instances
On-Demand Instances

You pay for computing capacity by the second with On-Demand
Instances, and there are no long-term obligations. You have complete
control over its lifespan, deciding when to start, restart, hibernate, or

terminate it.

When you buy On-Demand Instances, you do not have to commit to
anything long-term. You pay for time your On-Demand Instances are
operating. A running On-Demand Instance's pricing per second is fixed.

Spot Instances

A Spot Instance is a virtual machine that runs on spare EC2 capacity
accessible at a lower price than the On-Demand price. Spot Instances
allow you to request new EC2 instances at great discounts, allowing you
to reduce your Amazon EC2 charges dramatically.

If you can be flexible about when your applications run and if your
applications is interrupted, Spot Instances are a cost-effective option.
Spot Instances are ideal for data analysis, batch processes, background
processing, and optional activities.

We will look at some scenarios where we would want to use one over
the other.

Quick Reference for Application Scenarios
Most of the EMR scenarios will fall into one of these categories. Assume
we run long-running clusters with predictable variations in compute
capacity, such as a data warehouse. We might have requirements for a
cost-driven structure, meaning that you need to run a transient cluster
because lower costs are more important than the time is to complete.
We also have data-critical scenarios, meaning that if you lose any part
of the data, that is not acceptable. You need to ensure that all data is
persisted on HDFS and protected from sudden terminations. Finally,
you might run EMR clusters for application testing, which means that
you are testing new applications and preparing them for production

environments.

Figure 6-27: Application Scenarios

We will look at what type of instances we would want to run for each of
these scenarios, whether an on-demand or spot instance.

1. For long-running clusters and data warehouses, we need the
data to persist. We also have an idea of what the computational
capacity will be. For example, let us assume at the end of every
week or the end of every day, all of the data scientists in the
company submit an EMR job at a particular time, let us say 4:00
PM, 5:00 PM. The compute capacity needs to expand to handle
all of the jobs. It means that we can add task nodes to add more
computational power to the EMR cluster. Hence, we could use
spot instances for our tasks nodes to save the most money or set
up an instance fleet. Instance fleet allows us to use spot
instances if the capacity is available and then switch to on-
demand power if the spot is unavailable at the price we bid on.
Depending on the importance of the workload instance, the
fleet might be a better option. We would use the on-demand
instances to handle the normal capacity and spot instances to
run our peak load requirements.

2. If money is a huge factor and we want to save as much money as
possible, we could use spot instances for our different nodes. Let us
say that the spot instance price exceeds whatever you bid, then
that means you will lose any data on the EMR cluster. Because we
will be running transient clusters at this point, we are more
focused on saving money than the actual time it takes to complete,

but losing partial work is acceptable.
3. It is where critical data scenarios come into play. We cannot lose

any data if the instances within the cluster are terminated. We will
also not lower costs, but losing partial data is not acceptable. We
could run on-demand instances on the primary and the core nodes
to ensure that any data persisted within HDFS. We could use spot
instances for our task nodes to handle any spikes in workload.

4. The entire cluster can be run on spot instances with application
testing to save on testing costs.

Figure 6-28: Choosing Instance type

EXAM TIP: If you want to save money, then use spot instances. If
your data is super important or your instances are running the entire
time, make sure to use on-demand instances for your primary and
core nodes, and for your task nodes, you can use spot instances.

EMR Operations - Monitoring and Resizing
Clusters

CloudWatch Events
CloudWatch is used for monitoring your AWS resources, and there are
several different CloudWatch events that we can use to monitor our
EMR clusters.

If we look at this in the console, we can create a CloudWatch event
rule. We can select the EMR as a service and select the event type.

Figure 6-29: Service Name

We can select a state change either within the EMR cluster or within
any EMR configuration error that happens. Let us assume we prefer a
state change. We want to know if any of the EMR cluster state changes.

Figure 6-30: Event Type

If we select a state change, we can choose from many different state
changes. For example, we can be notified if we create an auto-scaling
policy that scales up our cluster during high demands. If the EMR
cluster or the auto-scaling group adds more EC2 instances, we can also
create steps or jobs within our EMR cluster. If the status changes on
those, i.e., whether they are completed or terminated, we can be
notified of that. We can be told for cluster state changes, i.e., is our
cluster up and running? Is it terminated? Is there some type of error
that happened? Hence, there are many different types of state changes
that we can choose from.

Figure 6-31: Specific Detail Type

If we select a step status change, we can determine if the job being
run is canceled, pending, completed, failed, or currently running. It
gives us a good understanding of what is being done on the cluster, the
processing, and whether the job is completed.

Figure 6-32: Specific State

We can invoke many different targets whenever the Cloud Watch rule
event occurs. Let us assume we select when it completes. Once it is
complete, the CloudWatch event rule can then trigger another event.
This event might be an SNS topic that sends an email or text message.
We could also start a Lambda function that spins up another EMR
cluster that uses the output data from the original EMR cluster.

Figure 6-33: Targets

CloudWatch Metrics
We will discuss some metrics that we might want to follow to scale up
our cluster or add more instances or needing to scale down our cluster.

Tracking Cluster Progress

If we want to track the progress of the cluster, we can use these metrics:

1. RunningMapTasks
2. RemainingMapTasks

3. RunningReduceTasks
4. RemainingReduceTasks

It will help us determine the number of maps, reduce tasks currently
running on the cluster, as well as the number of maps, and reduce tasks
remaining for a particular job.

Detecting Idle Cluster

We could also track a Cloud Watch metric that helps us determine if
one of our clusters is idle. It means we are being charged, and the EMR
cluster is not even doing any work. That means life is costing us money,
but it is not running any task.

No More Storage for HDFS

Another important Cloud Watch metric so if there is no more storage
for HDFS, we can monitor the HDFS utilization metric, which is the
percentage of disk space currently being used. We can trigger an event
that fires once a high rate of power is used; let's say 80% of the capacity
is used. We will fire a trigger that sends an email informing us that we
are running out of space in HDFS. You need to add more instances, you
need to add more EBS volumes, or you need to do something to make
sure you have enough room for all of your HDFS data, as well as
replications.

Monitor a Cluster with UI
Not only can we monitor our cluster with CloudWatch metrics, but we
can also monitor our cluster with an actual user interface. If you go into
the EMR documentation, you can see all of the links for these various
UI components that come installed with an EMR cluster.

Figure 6-34: Interfaces

We install Hadoop and other applications on our EMR cluster publish
user interfaces as websites hosted on the primary node. Hence, a lot of
the stuff that we can do using the command line by SSH into the
primary node, we can also do through these user interfaces, and they
are a bit easier to work with. To enable these user interfaces, we need to
use SSH tunneling with local port forwarding or use SSH tunneling with
port forwarding with SOCKS proxy settings.

Resizing a Cluster – Manually
To resize the cluster, you cannot have fewer core nodes than the
replication factor. We cannot resize less than the replication factor. For
example, if we have ten or more core nodes, the replication factor is
three, meaning we cannot resize our core nodes to have one or two core
nodes. Therefore, we would first need to change the replication factor

in the HDFS-site.xml file and restart the NameNode daemon; then, we
could manually adjust the number of core nodes.

Resizing a Cluster – Auto Scaling
EMR-managed Scaling

With EMR managed scaling, we can automatically increase and
decrease the number of instances in the core and task nodes based on
your workload. Master nodes do not scale, though. You set a minimum
and maximum limit for the number of instances in your cluster nodes.
You create a custom auto-scaling policy.

Whenever we create our EMR cluster within the console, we can select
cluster scaling, and then we can use an EMR manager to scale or create
a custom auto-scaling policy.

If we select EMR managed to scale, we set the minimum, the maximum,
the on-demand limit, and the full core nodes we want. Depending on
our workload, it will automatically decrease and increase the number of
instances.

Figure 6-35: EMR Managed scaling

Custom Auto Scaling Policy

For a custom auto-scaling policy, we would select the minimum
instances, the maximum instances, and what we want to scale out and
scale back in, depending on the metrics within CloudWatch.

Figure 6-36: Custom Automatic Scaling Policy

We can set the minimum and maximum instances for our core or task
nodes if we go deeper. We can then select the scale-out policy. This
scale-out policy is completely customizable to any of the CloudWatch
metrics that you want to follow, whether it has to do with memory
utilization or CPU utilization or if it has to do with the amount of space
that is left in HDFS.

Finally, you can set a scale in the policy. If a certain threshold goes
below or above a certain point, you can get rid of some core and task
nodes.

Figure 6-37: Auto Scaling Rules

Let's assume we wanted to add a new rule for a scale-out policy. It
would look like the image below.

Figure 6-38: New Rule for Scale-out Policy

We need to set the minimum and a maximum number of instances that

need to be spun up or have an individual capacity when this scale-out
rule is hit. We give it a rule name, add the number of EC2 instances, set
the CloudWatch metric that we want this rule to trigger on, and give
the comparison operator a particular value. This rule will trigger as long
as that value is met for an evaluation period or a specific amount of
time. We can also set a cool-down period. A cool-down period
determines the amount of time that must elapse between a scaling
activity, starting by rule, and the start of the next scaling activity,
regardless of the power that triggers. Once the scaling activity occurs,
you want to make sure that you provide it with some cool-down period
to ensure your EMR cluster is available and stable. At that point, the
next rule can start to be evaluated.

EXAM TIP: We can monitor our cluster by monitoring the
CloudWatch metrics. We can manually resize our EMR clusters, or
we can use auto-scaling. Either we can use a custom auto-scaling
policy or the EMR managed to scale policy.

EMR File Storage and Compression
How Hadoop Splits Files?
Hadoop splits large files into multiple chunks of smaller sizes. After
breaking the files, a single map task processes each part. The HDFS
framework has already separated the data files into various blocks using
Hadoop as the underlying data storage. Since our data is already
fragmented, Hadoop uses HDFS data blocks to assign a single map task
to each of the HDFS blocks. Hence, whenever we use Hadoop on our
EMR cluster, Hadoop either splits the files or stores the files in HDFS or
has the file stored in S3. If stored in HDFS, the files are automatically

divided into chunks. If they are stored into S3, files are split into
multiple HTTP range requests. Whether using HDFS or S3, the
compression algorithm needs to have splitting available.

Figure 6-39: Splitting of files

Consider an example in which we have a large file on which we are
using some compression algorithm. It does not allow for splitting.

Figure 6-40: Splitting example (i)

That means that only a single map task will be mapped to that file, but
if it allows for splitting, in this case, we can have multiple HTTP range
requests when moving that data from S3 onto our EMR cluster.

Figure 6-41: Splitting example (ii)

If the compression algorithm we are using allows for the files to be split,
then EMR will process the chunks in parallel.

Figure 6-42: Splitting example (iii)

Different Compression Algorithms
The table below gives us a good understanding of which algorithms are
splitable versus those not splitable. It lays out the compression ratio
and can it speed to decompressing those files.

If we are trying to save space on our HDFS cluster, we might use the

Gzip or the Bzip2 compression algorithm.

Figure 6-43: Space Savers

If we are trying to save time, we might use the LZO and Snappy
algorithms.

Figure 6-44: Time Savers

Bzip2 and LZO are splitable algorithms. These will be the best
algorithms to use if we want to map multiple. We will map request
tasks to a single file because these files can be split up when moving
from S3 onto our cluster.

Figure 6-45: The split ability

The Benefits of File Compression
Better Performance: You get better performance when less
data is transferred between S3, mappers, and reducers.
Less Network Traffic: It also gives us less network traffic
between S3 and EMR since you share fewer data.
Reduced Storage Costs: Smaller compressed files take up less
storage, so you end up paying less for storage.

Different EMR File Formats
EMR accepts many different file formats. We can use text files. This can
be CSV files or tab-separated files, or JSON files. These are commonly
used everywhere. Parquet is going to be a column-oriented file format.
It is widely used in the Hadoop ecosystem and has HBase, Map reduce,
Pig, Spark. It is a file format created by Apache specifically for the
Hadoop ecosystem. We can also use ORC or ORC file formats. It is an
optimized row-column file format, and this is a highly efficient way to
store Hive data. EMR also accepts sequence files, and these are flat files
that consist of binary key-value pairs. The last file format is Avro, and it
is a row-oriented data serialization framework created by the Apache
Hadoop project. It uses JSON to define the different data types and
protocols. It serializes data into a compact binary format.

Understanding the file formats that we can use and the compression
algorithms will better understand how large our files need to be.

File Format Descriptions Commonly Used

Text csv, tsv, json Everywhere

Parquet
Columnar-oriented

file format

Common in the
Hadoop ecosystem
(Hive, HBase, Map
reduce, Pig, Spark)

ORC
Optimized Row

Columnar file format

The highly efficient
way to store Hive

data

SequenceFile
A flat file consisting of
binary key/value pairs

Used extensively with
Map reduce

input/output formats

Avro
Row-oriented Data

serialization
framework

Developed and used
by the Hadoop

project.

Table 6-02: EMR File Formats

File Sizes Best Practices
According to AWS and the EMR best practices, we can look at the
algorithms we are using, whether they are splitable or not, and then
determine the file sizes. Hadoop will assign a single mapper to process
our data if the compression type does not allow for splitting. That

means that a single thread is responsible for fetching that data from S3.
Since a single line is limited to how much information it can pull from
S3 at any given time, this is the throughput. The process of reading the
entire file from S3 into a mapper becomes a bottleneck for our data.
Hence, the best practice is to have a file size of one to two gigabytes
for algorithms that do not allow splitting. If splitting is available for our
compression algorithm, we can have file sizes from two to four
gigabytes.

We need to avoid smaller file sizes, hence, 100 megabytes or less. We
need to plan for fewer larger files. Typically, you want your file sizes to
map to the block size that you have set within Hadoop and EMR.
Subsequently, it will feed those files into a mapper; your block size has
a fixed cost; hence, you want to utilize that over large volumes of data
to maximize the overall throughput of your cluster.

Block size and file size need to be about the same. If you have smaller
files, you have two options.

Your first option is you can reduce the HDFS block size. For
example, you can set it to one megabyte (1MB) since the default
is 128 megabytes (128 MB).
Your other option is to use the S3DistCP command to combine
smaller files. You can take a lot of smaller files and combine
them into a single large file.

S3DistCp Command
S3DistCP is an extension of DistCP. It is optimized to work with AWS
S3 service. The Apache framework creates DistCP, while AWS makes
the S3DistCP command. It has been optimized for your EMR and S3
workloads.

It allows you to copy files within a cluster or from one cluster to

another or S3 into your HDFS cluster.
It also allows you to combine smaller files into larger files. It can
help you copy data between S3 buckets or S3 to HDFS or HDFS
to S3.
Either you can run S3DistCP by using a step within your EMR
cluster, or you can run it on the primary node. It allows you to
copy data and combine many small files into fewer larger files.
We can either run this on the primary node's command line-
shell or create a new step in the existing EMR clusters.

EXAM TIP:
How Hadoop Splits Files – Files are split into smaller chunks and

a map task processes each chip.
Different Compression Algorithm – Gzip, Bzip2, LZO, and

Snappy.
The benefits of File Compression – Better performance, less

network traffic, reduced storage cost.
Different EMR File Formats – Text, Parquet, OCR, SequenceFile,

and Avro.
File Sizes Best Practices – Dependent on your compression

algorithm and time constraints.
S3DistCP Command – A tool used for copying files and combining

many smaller files into fewer larger files.

Lab 6-01: Data Analytics with Spark and EMR
Introduction
Amazon EMR

Amazon EMR is the industry's most advanced cloud big data platform
for data processing, interactive analysis, and machine learning. That
leverages open-source frameworks such as Apache Spark, Apache Hive,
and Presto. EMR allows you to execute petabyte-scale analysis for less
than half the cost of typical on-premises solutions and more than 1.7x

quicker than ordinary Apache Spark.

Amazon EMR frees you up to focus on data transformation and analysis
rather than maintaining computing resources or open-source apps, and
it saves you money. You may rapidly deploy as much or as little capacity
as you want on Amazon EC2 using EMR. You can build up scaling rules
to handle changing compute demand. You may configure CloudWatch
alerts to notify you of changes in your infrastructure and take fast
action. You may use EMR to submit workloads to Amazon EKS clusters
if you utilize Kubernetes. Whether you utilize EC2 or EKS, EMR's
optimized runtimes speed up your analysis and save you time and
money.

Amazon Simple Storage Service (S3)

Amazon S3 is a type of object storage that allows you to store and
recover any quantity of data from any location. It is a low-cost storage
solution with business resilience, reliability, efficiency, privacy, and
infinite expansion.

Amazon S3 is a web service that allows you to store and retrieve an
infinite quantity of data from any place and at any time. You may
quickly create projects that integrate cloud-native storage using this
service. Because Amazon S3 is easily customizable and you only pay for
what you use, you can start small and scale up as needed without
sacrificing performance or dependability.

Amazon S3 is built to be highly adaptable. Instead of finding out how to
store their data, Amazon S3 allows developers to focus on innovation.
Build a simple FTP system or a complex web application like the
Amazon.com retail website. Read the same piece of data a million times

or only for emergency disaster recovery; store whatever type and
amount of data you desire.

Problem
Assume you are a data analytics in an organization. The organization
that you work in has a wide variety of users. They give you the task of
running some data analytics for an upcoming marketing campaign.
They give you a target to determine the most common users, grouped
by gender and age. Hence, how can you automate this task?

Solution
 The solution is you use the AWS service to automate this task. To
accomplish this, you must first build an AWS EMR cluster and upload
user data into HDFS. Following that, you will execute a PySpark Apache
Spark script to count the number of users and categories them
according to their age and gender. Finally, you will need to load the
results into the AWS S3 bucket for further analysis.

Note: Before starting the lab, create an S3 bucket as used in this lab.

Figure 6-46: Data Analysis with Spark and EMR

Step 1: Create AWS EMR Cluster

1. Log in to the AWS Console.
2. Click on the Services.

3. Select the EMR from the Analytics.

4. Click on the Create Cluster button.

5. Click on the Go to advanced options.

6. Select the Hadoop 2.10.1 and Spark 2.4.7.

7. Scroll down. Click on the Next button.

8. Click on the Pencil icon button.

9. Select the m4.large instance type. Then click on the Save
button.

10. Click on the Pencil icon button.

11. Select the m4.large instance type. Then click on the Save
button.

12. Update the instance count for the core node to one.

13. Scroll down. Click on the Next button.

14. Give a name ips-age-gender-analytics-cluster.

15. Click on the Next button.

16. Click on the Create Cluster button.

17. It will take 10 to 15 minutes to create a cluster.

18. Hence, successfully created the AWS EMR cluster.

Step 2: Open the HDFS Port

1. Click on the Application user interfaces tab.

2. Copy the Port Number from the HDFS Name Node URL.

3. Click on the Summary tab.

4. Click on the Security Groups for Master URL in the new
browser tab.

5. Select the Elastic Map reduce-master security group ID
link.

6. Click on the Edit inbound rules button.

7. Scroll down. Click on the Add rule button.

8. Leave the type as the Custom TCP.
9. Paste the copied HDFS Port Number.

10. Select the o.0.0.0/0 IP address.

11. Click on the Save rules button.

12. Close the Security Groups tab and go to the AWS EMR
dashboard.

Step 3: Copy Data from S3 to HDFS Using s3-dist-cp Command

1. Click on the Application user interfaces tab.

2. Open the HDFS Name Node URL on the new tab.

3. Click on the Utilities. Then click on the Browser the file
system.

4. You will see the different folders.

5. Go back to the AWS EMR Cluster dashboard.
6. Click on the Steps tab.

7. Click on the Add Step button.

8. Select the Custom JAR step type.

9. Give a name ISP Copy data and script to HDFS.

10. In the JAR location, copy and paste the following command
command-runner.jar.

11. In the argument field copy and paste the following command
s3-dist-cp --src=s3://das-c01-data-analytics-
specialty/Data_Analytics_With_Spark_and_EMR/ --
dest=hdfs: ///

12. Select the Continue in action on failure.

13. Click on the Add button.

14. It will take a few minutes to complete. The step copies data
from the S3 bucket onto the Hadoop cluster.

15. Hence, it completes the step.

Step 4: Run a PySpark Script Using spark-submit Command

1. Go back to the Hadoop HDHS tab. Click on the Refresh
button.

2. Click on the user-data-acg folder.

3. The folder contains hundreds of CSV files.

4. Go back and Click on the pyspark-script folder.

5. The folder contains the PySpark script.

6. Below is the figure of PySparck python code.

7. Go back to the AWS EMR dashboard. Click on the Add Step
button.

8. Select the Custom JAR step type.

9. Give a name IPS Run PySpark script.

10. In the JAR location, copy and paste the following command
command-runner.jar.

11. In the argument field, copy and paste the following command
spark-submit hdfs:///pyspark-script/emr-pyspark-
code.py

12. Select Continue in Action on failure.

13. Click on the Add button.

14. The step takes some time to run the PySpark script.

15. After the step is completed, click on the View logs of the IPS
Run PySpark script.

16. Click on the stdout.

17. The list shows 20 results, and the top shows the most
common age and gender.

18. Go back to the Hadoop HDFS tab and view the root
directory by entering / into the search bar.

19. The folder contains the CSV file.

Step 5: Copy Data from HDFS to S3 Using s3-dist-cp Command

1. Click on the Services.

2. Select the S3 from the Storage.

3. Click on the Create bucket button.

4. Give a name ips-gender-age-analytics-bucket.

5. Click on the Create Bucket button.

6. Click on the Add Step button.

7. Select the Custom JAR step type.
8. Give the name IPS Load results to S3.
9. In the JAR location, copy and paste the following command

command-runner.jar.

10. In the argument field copy and paste the following command
s3-dist-cp --src=hdfs:///results --
dest=s3://<YOUR_BUCKET_NAME>/

11. Select the Continue in action on failure.

12. Click on the Add button.

13. The step takes some time to copy the data from HDFS into
the S3 bucket.

14. Hence, the step is completed.

15. Go to the S3 dashboard. Click on the ips-gender-age-
analytics-bucket.

16. Select the file. Click on the Actions. Then click on the
Download as.

17. Open the downloaded file to verify that it shows all the data,
aggregated by age and gender.

Mind Map

Figure 6-47: Mind Map

Practice Questions

1. Map reduce is a technique that data scientists can use to distribute
workloads across many computing nodes.

A. True

B. False

2. ------------------------- is open-source software that allows you to
operate a distributed file system over several computers to tackle
challenges requiring large amounts of data.

A. EMR

B. Hadoop Distributed File System

C. EMRFS

3. ----------------------- is a fully managed AWS service that allows you
to spin up Hadoop ecosystems.

A. Hadoop Distributed File System

B. CloudWatch

C. Elastic Map Reduce

4. ------------- node tracks and directs the HDFS.

A. Task Nodes

B. Primary Nodes

C. Core Nodes

5. The ------------ is responsible for the YARN resource management.

A. Primary Node

B. Core Node

Task Node

6. ------------- are managed by the primary node, and run tasks such as
Hadoop Map reduce tasks, Hive Scripts, and Spark executors.

Primary Node
Core Node
Task Node

7. --------------- are optional and can be used to add power to perform
parallel computation tasks on data like Map reduce tasks and Spark
executor.

Primary Node
Core Node
Task Node

8. ------------------ can be added and removed from the core nodes to
ramp up extra CPU or memory for compute-intensive tasks.

A. Task Nodes

B. Primary Nodes

C. Core Nodes

9. The EMR clusters only reside in a single availability zone.

A. True

B. False

10. --------------- is used for very high I/O performance and high IOPS
at low cost. It is best used for temporary data (caches, buffers, and
scratch data).

A. Local File System (Instance Storage)

B. Local File System (EBS Volume)

C. Hadoop Distributed File System (HDFS)

D. Elastic Map Reduce File System (EMRFS)

11. --------------- is used to add more storage for HDFS.

A. Local File System (Instance Storage)

B. Local File System (EBS Volume)

C. Hadoop Distributed File System (HDFS)

D. Elastic Map Reduce File System (EMRFS)

12. -------------------- is best used for caching the results produced by
intermediate job-flow steps.

A. Local File System (Instance Storage)

B. Local File System (EBS Volume)

C. Hadoop Distributed File System (HDFS)

D. Elastic Map Reduce File System (EMRFS)

13. ----------------------- is best used for persistent store and S3 features
that are needed, like server-side encryption and consistency.

A. Local File System (Instance Storage)

B. Local File System (EBS Volume)

C. Hadoop Distributed File System (HDFS)

D. Elastic Map Reduce File System (EMRFS)

14. If you set your cluster to terminate automatically, it will do so after
completing all the steps. It is known as -------------------.

A. Transient Cluster

B. Long-Running Cluster

15. If you set up the cluster to continue operating after processing is
completed, the type of cluster is known as ------------------.

A. Transient Cluster

B. Long-Running Cluster

CHAPTER 07: USING REDSHIFT

Introduction
Redshift is a data warehousing service. It can warehouse the data at the
petabyte scale, which means Redshift can store large data. It can also
index and query data so that it remains usable. We can store petabytes
and hexabytes of data in S3.

Figure 7-01: Steps to Success

Consider application architecture; all the services in architecture will
emit data. In this example, we are collecting a huge amount of data,
depending on how heavily our application is. We can manage all of the
data artifacts that come from Redshift's services and perform analysis
on our application. We can perform analysis on the operation, the

performance, the general usage, everything about our application we
can collect in Redshift, and then would be able to write queries to
perform analysis of that data.

Figure 7-02: Data Warehouse

EXAM TIP: Redshift is a data warehousing service. It can warehouse
the data at the petabyte scale and index and query that data.

Redshift Architecture
Cluster
Within the cluster, we have either leader nodes or worker nodes. The
leader node manages the schema. It contains the data warehouse

metadata and performs all the query planning and script generation.
The worker nodes perform query execution and slice management
before storing all the data within the Slices.

Figure 7-03: Cluster

Node
These are EC2 instances; there are three types to choose from for the
most part. Node is the individual compute resources with storage
attached for the Redshift cluster. The storage attached to these nodes is
faster. These are generally used in cases where we need to perform
queries quickly. We want near real-time analytics.

We also have dense storage node types. These have slower storage. The
full capacity in these tables is the total capacity for a cluster. If we have
128 DS2 X large nodes in our group, we will have two petabytes of
storage. It is how we get the petabyte-scale data warehouse with
Redshift, anything larger than 2 petabytes. We need to stand up a
second cluster and manage that in our application layer, but that is
unlikely. Two petabytes are a huge amount of data. We also have the

new RA3 nodes, and these have the same amount of storage associated
with both types. The warehouse is backed by S3 and uses a local storage
cache to provide hot data for our queries. This storage auto-scales with
your usage; we get a total capacity of 4 to 8,000 tebibytes for these node
types, with the maximum nodes per cluster, for each node type.

Figure 7-04: SageMaker Hosting Services

EXAM TIP: We get faster computing and more storage than dense
compute. We can experience a little latency with our queries if the
storage cache on the nodes themselves does not have the data. It has
to be retrieved from S3, but generally, they perform faster than thick
storage while having more storage than dense computers.

Slice
A slice is a group of configurable entities kept in a reusable asset as a
single unit. Slices are useful for grouping entities and other slices for
reuse. Prefabs and slices are similar, but slices are part of the new
component entity structure. Prefabs cannot contain component
entities, although slices can.

Figure 7-05: Slice

EXAM TIP: Each Slice has its separate piece of computing,
memory, and storage.

Redshift Query Process
A cluster has a leader node and several worker nodes. If there is a single
node cluster, the leader and worker will be the same node. It will
separate the leader into a Slice, and we will have our user that sends a
query to the leader node. The leader node generates a query plan,
which lets it create execution scripts to complete that query because it
knows where all of the data is stored in the cluster. Those execution
scripts will go to worker nodes. The Slices themselves do not store any
table data. They have data, and they know where that data is. The
worker nodes will go to their Slices, and then they will each have a
piece of data that they need to return, which will come back, and the
leader will combine that data into our query response, and that query
response will go back to our end user. That is the Redshift query

process at a very high level.

Figure 7-06: Redshift Query Process

EXAM TIP:
Cluster – Organizational container for resources

Node – Similar to an instance in RDS

Slice – Logical subdivision of node resources

Query Process – Query plan, Query, Execution Scripts

Redshift in the AWS Service Ecosystem
With Redshift, we are in the active utilization area. We have end users
on the left and a businessperson on the right that needs to perform
some analytics on the application. End-users collect authentication
data, and they will then log in to our service. An email goes back to the

end-user and logs something in a database. There might be some data
that we want to make sure makes it through into our storage or
otherwise into our application, so we will put it into a data stream,
which will be processed out by another compute resource that
computes resource may log something into Redshift. It may also store
something in our database. It will generate a return that goes back to
the end-user.

After a while, the businessperson wants to perform some analysis to
hook Redshift up to a visualization tool. He will generate graphs of our
data with that visualization tool.

As the application grows, we may want to track any emails are sent out.
We will trigger a compute resource off any usage of our email service
start the same event service from our database engine so that we can
archive some more data in Redshift and our storage bucket; Redshift
may be storing a processed version of the record where the bucket
stores the raw form itself. We can use something in RedShift to query
data directly out of buckets. This is very useful as the application grows
and we get more data; we may need to store some of that data outside
of RedShift to keep it in our storage bucket or infrequent queries.

The businessperson can also run queries directly from RedShift. He may
want to generate some comprehensive data reports or other data to
share with third parties, so he has two ways to get data from our
analytics pipeline. We have DynamoDB Streams, which will let us
trigger Lambda functions. The service that enables us to query S3 data
from Redshift is called the Redshift spectrum.

Figure 7-07: Application Service

Cognito performs user authentication and management. API Gateway
provides us API services. Lambda is a compute resource. Simple
notification service lets us send emails or text messages to end-users or
the application administrators. Kinesis is a data streaming service.
DynamoDB is used as a transactional database for our application.
QuickSight is a visualization tool. The simple storage service provides
archiving and raw data storage.

Figure 7-08: Application Services

EXAM TIP:
Basic Analytics – Gathering points for application emitted
data

More data – Utilizing streams, triggers, and Lambda allows
easy expansion

Application Service – Services in our scenarios, Redshift
aggregates data from them

Redshift Use Cases
Data Warehouse VS Data Lake
The dissimilarity between a data warehouse and a data lake is more
structured. The data in it will be cataloged, and the access speed for
retrieving data from a data warehouse is much faster than it would be
from a data lake. It is primarily because of the lack of structure and
cataloging that can be seen in a data lake.

What makes Redshift Different?
It is, in most cases, much faster if optimizing to the same level. It is
much more scalable, so we can have a small warehouse and easily scale
it up to a gigantic warehouse. A few AWS service integrations make
some of the paths that we would perform with the data warehouse
considerably easier than they would be if we had to integrate with other
systems in an ad hoc manner.

Redshift Table Design
Columnar databases let us access columns of our data more efficiently.
The column table is arranged to set a columnar data file. To get the
node size from our row database, we access every row in our table,
whereas we need to access a single row with the columnar database. It
has significant implications for OLAP or OLAP transactions where we
need to make comparisons or calculations from large amounts of
single-column data.

Figure 7-09: Columnar Database

Data Types
There are several numeric data types, and they have aliases. You can
maintain compatibility between Postgres and Redshift, for instance,
because Redshift's interface is Postgres compatible. Redshift only has a
reduced set, but it contains aliases to map them appropriately. There
are few signed integer data types and few floating-point data types.
Boolean is standard. It is only for true or false. Texts have character and
variable characters. The character is fixed length, whereas varchar or
variable character is a variable length. In time data types, the date is the
calendar date, which is the year, month, day, and the timestamp is the
date and time. The timestamp TZ includes the time zone. Time and
time TZ is the daytime or zone daytime had; this gives us our set of data
types. These will map incompatibility to the Postgres data types
because Redshift is the primary compatible interface. Aliases are used
to map to the actual Redshift data types to maintain compatibility.

Figure 7-10: Data Types

Compression

In Redshift, Postgres can compress individual columns, which means
different compression types are available depending on the data type.
Most of our number and time data types will default to AZ64
compression, and our character and variable character data types will
default to LZO compression and several other impression encodings
available. The other data types are default to raw, Boolean, real, and
double. If something is our sort key, it will need to be raw; it is
uncompressed because the database engine frequently performs
queries.

Encoding Keyword Default

Raw RAW Sort keys, Boolean, Real, Double

AZ64 AZ64 SMALLINT, INTEGER, BIGINT,
DECIMAL, date, TIMESTAMP,
TIMESTAMPTZ

Byte
dictionary

BYTEDICT

Delta DELTA, DELTA32K

LZO LZO CHAR, VARCHAR

Mostlyn MOSTLY8,
MOSTLY16,
MOSTLY32

Run-length RUNLENGTH

Text TEXT255, TEXT32K

zstandard ZSTDD

Table 7-01: Compression

EXAM TIP: The inability to create a sort key because the column
compression type is set to something different from basic; you would
need to modify that table to remove the compression from that column
to use it as a sort key.

Sort Keys
Consider a data set; it can be represented as Y 1, 2, 3, and then A, B, C.
There are two options for sorting our data. For example, the Chroma
and number values for sort keys. The Redshift engine will split the data
set into three blocks if using a compound sort key. Within each one of
those blocks, the secondary sorting is by the numbers. An interleaved
sort key breaks the data set into nine blocks.

Figure 7-11: Sort Keys

The compound is the default sort key type. If we do not specify complex
or interleave, it will create compact compound keys that benefit
operations. Compound sort keys work well for hierarchical data or
multi-column sorting. Order keys when creating a compound key will
increase our table maintenance. Interleave will improve table

maintenance. It is important to vacuum and analyze our tables.
Interleave keys makes it easier to pull out those individual blocks that
increase table maintenance. Analyzing interleave keys work much
better when using a single column for a key.

Distribution Styles
1. Even – Blocks are distributed evenly between cluster slices

(default).

2. Key – identical key values are stored on the same Slice.

3. All – All slices store a copy of table data.

Constraints
1. Primary, Foreign Key:

Used by the query planner as a hint about relations.

2. Unique:

Not enforced used by query planner as a hint.

3. Not Null:

Not enforced or respected.

Redshift Spectrum
How do you query flow?
Redshift Spectrum is an interface to create foreign tables in our
Redshift cluster from stored data in S3. It uses the external keyword
when creating schemas and tables in our collection. It can read and
write to Spectrum tables. It does not support update and delete
operations.

Access control can either IAM or use AWS Lake Formation in query
flow, giving more granular control over tables. It is an external service

that sends data requests through access control and then goes to the
data store. The data store comprises a Glue data catalog and Athena
SQL interface connected to the underlying data in S3. Once that query
has been answered in Athena, it will return the data to Spectrum, which
then passes it back to the Redshift cluster and is combined with any
other data involved in our query to provide a query response cluster.

Figure 7-12: How Query Flows

Demo 7-01: Redshift

Step 1: Creating External Tables and Schemas

1. Log in to the AWS management console.

2. Search Redshift.

3. Select the cluster.

4. Click on Cluster.

5. Spectrum role is created.

6. Click on Query Editor.

7. Click on Connect to Database.

8. Define database name and user.

9. Click on Connect to Database.

10. Select Public schema.

11. Edit the Query. Click on Run.

12. Edit the Query.

13. Click on Run.

14. Edit the Query.

15. Click on Run.

16. Edit the Query and click on Run.

17. Click on Tables under the dashboard.

18. Select the table.

19. See the column name and the data type for each one. It is
how Spectrum works.

Step 2: Querying External Tables

1. Edit the Query.

2. Click on Run.

3. See the Query result (172,456 rows in our Spectrum table).

4. To get the actual data, edit the Query.

5. Click on Run.

6. We have a sales ID, a list ID, the seller ID, so forth, a bunch
of IDs, a many relational connection points.

7. Select the "Spectrum" schema.

8. Edit the Query.

9. Click on Run.

10. Query result of page 1.

11. Query result of page 2.

Lab 7-01: Querying Data from Multiple
Redshift Spectrum Tables
Introduction
This lab will utilize Redshift Spectrum to create several tables from data
stored in S3 and then test to ensure we can perform queries that include
joins of the tables we have created.

Figure 7-13: Lab Diagram

Problem
You are working in an organization as an AWS architect. You have been
tasked with testing accessing data stored in S3 from a Redshift cluster.
Your team hopes to realize cost savings by moving infrequently
accessed non-latency sensitive data outside your company's production
Redshift cluster. They have provided the required tables below with the
requisite column headers and test data in an S3 bucket. You will need to
create Redshift Spectrum tables with the appropriate DDL and run the
provided test query to ensure Redshift Spectrum will function for the
planned use case.

Solution

Step 1: Inspect the Lab Environment
1. Log in to the AWS Management Console. Make sure you

are in the us-east-1 (N. Virginia) region.

2. Search Redshift.

3. Select the Cluster.

4. Click on S3 under Services.

5. Click on the bucket.

Step 2: Create the Redshift Spectrum Tables

1. Click Connect to the database.

2. Click Connect.

3. Select public schema.

4. Edit the Query.

5. Click on Run.

6. There is nothing in this schema yet, so you need to create

your tables.

7. Use the Select schema dropdown on the left to select
users' data.

8. Edit the Query.

9. Click on Run.

10. After the query is complete, you can see the users' data
schema on the left now shows the names table.

11. Edit the Query.

12. Click on Run.

13. After the query is complete, you can see the user data

schema on the left now shows the location table.

14. Edit the Query.

15. Click on Run.

16. After the query is complete, you can see the users_data
schema on the left now shows the location table.

17. Edit the Query.

18. Click on Run.

19. After the query is complete, you can see the users' data

schema on the left now shows the age table.

20. Edit the Query.

21. Click on Run.

22. After the query is complete, you can see the users' data
schema on the left now shows the contact table.

23. Edit the Query.

24. Click on Run.

Step 3: Test Your Newly Created Redshift Spectrum Tables

25. Edit the Query.

26. Click on Run.

,

27. The query ensures your tables are correctly formed, and it
is possible to perform joins between them.

Mind Map

Figure 7-14 Mind Map

Practice Questions
1. Which service is a data warehousing service?

A. Redshift
B. S3
C. IAM
D. None of the above

2. Which service can store petabytes and exabytes of data in S3?

A. S3
B. Redshift
C. IAM
D. None of the above

3. What tool has nodes that are either leader node or worker nodes?

A. Node
B. Slice
C. Cluster.
D. None of the above

4. What is the individual compute resources that have storage
attached for the Redshift cluster?

A. Node
B. Slice
C. Cluster.
D. None of the above
5. Which of the following can compress columns in Redshift?

A. MySQL
B. Postgres
C. NoSQL
D. Aurora

6. What divides the compute, memory, and storage into separate
pieces?

A. Node
B. Cluster
C. Slice
D. None of the above

7. What manages the schema?

A. Leader Node
B. Worker Nodes
C. Both A and B
D. None of the above

8. What performs query execution, Slice management, and store all of
the data within the Slices?

A. Leader Node
B. Worker Nodes
C. Both A and B
D. None of the above

9. Organizational container for resources is ____________________.

A. Cluster
B. Node
C. Slice
D. None of the above

10. Similar to an instance in RDS?

A. Cluster
B. Node
C. Slice
D. None of them

11. Which of the following relate Query plan, Query, and Execution

Scripts?

A. Cluster
B. Node
C. Slice
D. Query Process

12. Which of the following is the Logical subdivision of node
resources?

A. Cluster
B. Node
C. Slice
D. None of the above
13. What performs user authentication and management?

A. Cognito
B. API Gateway
C. Simple notification service
D. DynamoDB

14. Which service lets us send emails or text messages to end-users or
the administrators of the application?

A. Cognito
B. API Gateway
C. Simple notification service
D. DynamoDB

15. Which service is used as a transactional database for applications?

A. Simple notification service
B. API Gateway
C. Cognito

D. DynamoDB

CHAPTER 08: REDSHIFT
MAINTENANCE AND OPERATIONS

Launching a Redshift Cluster
Interfaces
There are several interfaces for launching a Redshift cluster. Examples
of such include the AWS management console, the AWS CLI, and
various AWS SDKs.

Figure 8-01: Interface

Required Parameters
To use the AWS CLI, the parameters that need to provide when we
launch a Redshift cluster using the create cluster command for the CLI,
is a node type for our cluster. The cluster will have the same node type
for every node in our group. We cannot configure this per node. If our
cluster type is multi-node, we do not need to provide the cluster type
parameter but require several nodes. If our cluster type is a single node,
which is the other option for cluster type, we do not need to give the
number of nodes parameter. We will need to provide a user name and a
master user password. A cluster identifier must be provided to identify
our cluster.

Figure 8-02: Required Parameters

Considerations

Workload Do we know our workload? Is it fixed?

Nodes Do we know how much storage is needed? How
compute-intensive is our workload?

Pre-Existing Data Are we going to need to load existing data?

Table 8-01: Considerations

EXAM TIP:
Interfaces – Web console, AWS CLI, AWS SDKs.
Required Parameters – Minimal parameters are required at launch.
Considerations – Knowing the workload and use case helps define our cluster.

Demo 8-01: Launching A Cluster In A Web Console

Redshift keeps track of queries. We can save SQL queries. If we run an
inquiry a couple of times a year, it is always the same; we can keep

them and run them from a console or using the CLI or one of the
SDKs. There are also several configuration options. We can configure
some alarms about metrics. Also, a server marketplace has some
services that can be plugged into Redshift. The advisor monitoring
section gives us recommendations for our Redshift clusters and their
workloads.

To create a new cluster. Click on Create cluster.

If you choose the production option in cluster identifier, you can
configure your cluster much more minutely. If we click Free Trial, it
will eliminate most of our choices. We are not going to use running
because they are fairly expensive and it is also very nice that they show

the cost per hour. We do a single DC2 large node because it only costs
a quarter an hour, and see that with the RA3 16X large, we are paying
$13 an hour. These are big instances.

There are slower CPU options in dense storage that use a quieter
storage volume to give more storage per node. If we want a big
petabyte cluster, we need to use DS28X large nodes.

We have 32 nodes of dc2.large. We can use a slider to scale up or
change the numbers, showing our configuration summary change. We
end up with 5.1 terabytes of storage, and it would cost us almost
$6,000 a month. We need to be careful when launching Redshift
resources because they get expensive quickly. Alternatively, we do an
RA3 16X large scale-up; we pay $1.2 million a month. It gives 8.2
petabytes of storage.

If you do not provide a database name, your default database will be
named dev. We will put a strong password to satisfy most of AWS's
requirements.

If you want to attach an IAM role, click on the available IAM part,
select the role, and click the add IAM role.

If security groups need to be edited, we can either go to the VPC
console or the EC2 console, but we will use the default, which will let
us access it through the query editor in the console. We can change
the subnet group. If no additional subnet groups are created, use the
default.

Resizing a Redshift Cluster
Classic Resize

Hours To Days

Duration Impacting Factors:

Source cluster activity.
Size and number of tables.
Uniformity of data distribution across nodes.
Source and target node configuration.

Figure 8-03: Classic Resize

Elastic Resize
Minutes

Constraints:

It cannot be used on single-node clusters.
The cluster must be in a VPC.
The new configuration must have sufficient storage.

Figure 8-04: Elastic Resize

Check Available Resize Configuration:

It is possible to use the Describe-node-configuration-options CLI
command to see what compatible node configurations are available for
our cluster.

EXAM TIP:
Classic Resize – Hours to days: only moves user objects.
Elastic resize – Minutes: Migrate through the snapshot process.

Using Elastic Resize

We had a single node cluster and could not do the elastic resize on a
single node cluster. Go to the Options menu and select Resize.

Figure 8-05: Resize-demo

There is a two-node cluster; we can do a classic resize. If we want, we
also have the elastic resize option available, and then we have our resize
options here.

Figure 8-06: Elastic Resize

Our workload falls off at a certain time. If we want to shrink the cluster
or increase the workload, we can schedule when that will occur. We can
change our node type. We have dense storage and RA3 options
available that have sufficient storage. We cannot go down to two nodes,
so we cannot go from a multi-node cluster to a single node cluster. We
cannot go from a DC2.large to the larger dense compute option, but we
can change between node families.

Figure 8-07: Cluster configuration

Utilizing Vacuum and Deep Copy

The Vacuum Process
The Vacuum process will first reclaim disk space to remove rows
marked for deletion. Then it will sort the table, which will make queries
more efficient, and then reindex the table to account for that new
sorting so that our query planner knows exactly where all of our rows
are on our table. There is an exception: tables using interleave sort keys
need a special option.

Figure 8-08: The Vacuum Process

Vacuum Options

VACUUM FULL Reclaims Disk Space.
Sorts Rows.
Reindexes Tables.

VACUUM SORT ONLY Sorts Rows.
Default threshold 95% sorted.

VACUUM DELETE ONLY Reclaims Disk Space.
Default Threshold 5% marked
for deletion.

VACUUM REINDEX table
name

Performs Vacuum FULL on.
Interleaved Tables.

To Threshold PERCENT Sets threshold to perform SORT,

DELETE operations.

BOOST Ignores cluster activity and
contends for resources like other

processes.

Table 8-02: Vacuum options

Automatic Vacuuming
Automatic Vacuum Delete

Automatically reclaim disk space. It is triggered by a high
percentage of rows marked for deletion.
Activity monitoring dictates the schedule.

Automatic Table Sort
A high percentage of unsorted Rows triggers it.
Utilizes SCAN operations to identify unsorted tables.

Automatic Analysis
Automatically updates table statistics.
Waits for low activity periods to analyze jobs
Utilizes table statistics age for triggering.

What Is Deep Copy?

Consider starting with a dirty table. We want the
same result as a full Vacuum, but we have a huge
amount of unsorted data in this table. We cannot
see this because it is a little table, but that is one of
the use cases for Deep Copy. We will create a new
table. That is the same as our existing table. We
will copy the data, and then the process of copying
that data will sort it and remove any rows marked

for deletion. We then truncate the source stable,
take all the data out of it, and rename our target
table, and we get a clean table with the same effect
as a full Vacuum, but it is not as resource
accelerated as a full Vacuum. It does require that
table not be in active use when we do this because
it can take a while, but it can take less time than a
full Vacuum.

Figure 8-09: Deep Copy

Deep Copy Methods
A deep copy uses a bulk insert to duplicate and repopulate a database,
sorting it automatically. A deep copy is substantially faster than a
vacuum if a table has a huge unsorted Region. The trade-off is that you
should avoid making concurrent modifications during a deep copy
unless you can track them and place the delta updates into the new
table after the procedure is finished. A VACUUM operation
automatically allows concurrent updating.

We can create a table and use the existing table that will use the same
table definition to create our new table. We will insert a star from our
existing table, drop the current table, and rename it to the original table
name.

We can perform these operations through a temporary table, in which
we create a temp table, my table temp, and select star from the
existing table. We then truncate the current table, insert from our
temporary table the data that has the rows marked for deletion
removed, and it will sort the data in that select. We will insert that back
into the original table and then drop the temporary table.

We use the first option if we need to change the DDL of the table in the
process. The second option is the easiest, and the third option is the
fastest.

Figure 8-10: Deep Copy Methods

EXAM TIP:
Why vacuum? – Reclaim disk space maintain optimal query performance.

The vacuum process - Reclaim disk space, sort Data, reindex table.
Vacuum options – Full, sort only, delete only, and reindex, to threshold percent,
boost.
Automatic Vacuuming – Delete, sort, analyze.
What is Deep Copy? – Process to sort large amounts of unsorted data quickly.
Deep Copy Methods – Original table DDL, like table, temp table truncate.

Backup and Restore
Snapshots

Point in time backup of the whole cluster.
It can be manually triggered.
Scheduled automated snapshots.

Figure 8-11: Snapshots

Restoring from Snapshot
It creates a new cluster, and then that snapshot data is loaded as
queries request it. Hence, as the cluster needs data to fulfill a query, it
will bump that data up in the queue of loading from S3 to complete
those queries quickly. RDS does this for most of its engines as well. It is
not as noticeable for Redshift because of how the Redshift query
process works.

Figure 8-12: Restoring from Snapshot

Loading Data From S3
If we want to copy single tables in and out of a backup, Redshift has
very tight S3 integration. We can copy data out of S3. The IAM role
permits us to read out of that S3 bucket we identified. Redshift will go
and retrieve that data and load it into our table. We need to provide
some information about that data that we are pulling into our bucket,
but if it is formatted in a CSV or Parquet format, it can infer that
information from that data. We can also use this command to copy
Elastic MapReduce, DynamoDB, and SSH connections.

Figure 8-13: Loading Data from S3

Unloading Data To S3
We can use the unload command and provide a piece of SQL that
specifies the data we want to unload. When we give two directives,
which tell the command where to save that data, we need to provide an
IAM role with permissions to write into our target bucket and provide a
format. If we format it as Parquet, AWS calls this lake to unload
because Parquet is a common data lake format. Parquet is very efficient.
We are offloading a table to S3 because we will switch part of our
analytics workload to Athena. Athena works well with Parquet. We can
dump out our entire Redshift cluster into S3 and then point Athena at
that bucket, and we have access to the same data without running the
Redshift cluster. Once all is specified, Redshift will generate a file and
place it into our S3 bucket.

Figure 8-14: Unloading Data to S3

EXAM TIP:
Snapshots – Point in time backup of the entire cluster.
Restoring from Snapshot – Creates a new cluster; cluster configuration can be
modified.
Loading Data From S3 – copy command can copy data from S3 into the existing
table.
Unloading Data To S3 – unload command can export data from query to S3 in
CSV or Parquet format.

Monitoring
Redshift Console
Redshift console has the following services that we can monitor.

Cluster
CPU Utilization.
Maintenance mode.

Storage
Percentage Disk Space used.
Auto Vacuum Freed.
Read throughput.
Read latency.
Write throughput.
Write latency.

Database
Database connections.
Total table count.
Health status

Queries/Load
Query duration.
Query throughput.
Query duration per WLM queue.
Concurrency scaling activity.
Concurrency scaling usage.
Average query time by priority.

Usage limits
Usage limit for concurrency scaling.
Usage limit for Redshift Spectrum.

CloudWatch
In the CloudWatch, we have:

Cluster
Commit queue length.
Concurrency scaling sounds.
Database connections.
Health status.
Maintenance mode etc.

Node
CPU utilization.
Read IOPS.
Write IOPS etc.

Demo 8-02: Monitoring An Active Cluster
In the dashboard, we can see information about all clusters and
Redshifts. It is useful if we want to monitor a fleet of Redshift clusters.
This graph shows the number of queries over time and a running
script that loads this cluster for about an hour and can see the result.

We use a few links that got up to 64 in database connections.

The disk space used will be a flat line because we are doing a read load
against the cluster.

The CPU utilization only has one cluster. Hence, there is not a ton of
information, but this gives, if we had more than one, those metrics
would be available.

Redshift logs every query that comes to a cluster. We can change the
timescale. We can put in a custom scale if we want. We can see our
query overview, which gives us some throughput and the question’s
duration. It was running quick, short-read queries against the cluster,
and we can see how long things sat in the queue, how long they took
to run, and the average wait time for those queries. We could view all
of those queries.

The percentage disk space used is not useful. Leader computes zero
and one node CPU utilization. We can tell that our leader node was
doing most of the work because it had to generate the query execution
scripts to run those queries against our compute nodes.

Query monitoring metrics are available to the query history and
runtime. Therefore, we will look at the last three hours again and can
see all of our various. These are all of the query run times for each
one. We see which queries took longer to run than the actual queries.
We can select these and terminate the queries if they are still running,
which is very useful.

The database performance metrics will use the last three hours. We
can break it down to minutes, which will change it slightly, but we can
see the time used in the query processing stage. Most of our queries
were short, and they took under 10 seconds. We can see the query
throughput. We get an average of all of our queries, which most of our
quarters are short. The standard will be low because the medium and
long queries are not producing any metrics, then we have the query
duration. Redshift has great monitoring tools for all of the database

services, and it breaks a lot of this down, making it easier to look at
the performance of our clusters. We have a lot of tools available for
troubleshooting.

Workload concurrency gives the average running queries versus
average queued queries.

In the CloudWatch console, under metrics, go to Redshift.

For example, we are going to go to node metrics. These are the nodes
within our cluster. We will filter this down to the Monitor cluster. The
leader node was up near 100%, and our two compute nodes were a
little lower. Suppose we want to see the network received throughput.
We can see that there was quite a bit of network receive on the
compute nodes in our cluster. We loaded a bunch of data into our
group; then we did a reading against it.

EXAM TIP:
Redshift Console – Cluster/node metrics, Engine specifies metrics.
CloudWatch – provides a more granular view that can combine metric graphs.

Lab 8-01: Manually Migrating Data Between
Redshift Clusters
Introduction

This will utilize the Redshift UNLOAD and COPY
commands to emigrate data between existing
Redshift clusters.

Figure 8-15: Lab diagram

Problem
You have been handed over with a few pain points to clarify around
your company's Redshift solution. Some groups wish to create
incremental backups of certain tables to S3 in a format that can be
plugged into data lake solutions. Other groups want to have select
pieces of the main Redshift schema splintered to new department-
specific clusters. The original Redshift cluster introduced for the
company's analytics stack has become powerless over time.

You have come up with a plan to use the UNLOAD and COPY
commands to facilitate all of the above and need to evaluate a proof of
concept to make sure that all pain points above can be acquainted in
this manner.

You have to reclaim an evaluated AWS account with a Redshift cluster

consisting of a relatively small test table. In the AWS account, there is
an S3 bucket that will function as an intermediary storage point
between Redshift clusters and an end to test backup/data lake
solutions.

Solution

Step 01: Investigate the Lab Environment

1. Log in to AWS Management Console. Make sure AWS
Management Console is in the us-east-1 region.

2. Search S3 in the search bar.

3. Select the Bucket.

4. Search Amazon Redshift in the search bar.

5. Click on Amazon Redshift.

6. Click on the Cluster.

7. Click on Quick editor.

8. Click on Connect to a database.

9. Define database name and user.

10. Click on Connect.

11. Select the Public schema.

12. Edit the Query.

13. Click on Run.

14. Review some sample data.

Step 02: Launch the Target Redshift Cluster

1. Click on Cluster.

2. Click on Create Cluster.

3. Define the Cluster Identifier.

4. Select Free Trial.

5. Define User Name and Password.

6. Click on Create Cluster.

Step 03: Copy the Existing Redshift Table to S3

1. Edit the query.

2. Click on Connect and run.

3. Query completed.

4. Select the Bucket.

5. Two objects were created.

6. Select users-cluster-2.

7. Go through the cluster permission.

8. Click on Query editor.

9. Click on Change connection.

10. Define Cluster, Database name, and Database user.

11. Click on Connect.

12. Edit the Query.

13. Click on Run.

14. Go through the Query result.

Step 04: Copy Data from S3 to the Newly Launched Redshift
Cluster

1. Edit the Query.

2. Click on Connect and run.

3. The data should be identical to what you originally saw in the
user’s cluster.

Step 05: Check Your Data

1. Edit the Query.

2. Click on Run.

3. Your data should be the same as the data you noted from users-
cluster-2.

Mind Map

Figure 8-16: Mind Map

Practice Questions
1. Which of the following defines several interfaces for launching a
Redshift cluster?

A. AWS Web console

B. AWS CLI

C. AWS SDKs

D. All of the above

2. Which of the following is the minimal parameters required at
launch?

A. Interface

B. Required Parameters

C. Considerations

D. None of the above

3. _______________ means knowing the workload and use case helps
define our cluster?

A. Interface.

B. Required Parameters

C. Considerations

D. None of the above

4. Which of the following defined the requirement to use vacuum?

A. Reclaim disk space

B. maintain optimal query performance

C. Both A and B

D. None of the above

5. The vacuum process is ------------------.

A. Reclaim disk space

B. Sort Data

C. Reindex table.

D. All of the above

6. Which of the following defines vacuum option?

A. Full, the sort only

B. Delete only

C. Reindex

D. To threshold per cent

E. Boost

F. All of the above

7. What is the purpose of Automatic Vacuuming?
A. Delete
B. Sort
C. Analyze
D. All of the Above

8. What is Deep Copy?

A. The process to sort large amounts of unsorted data quickly.

B. The process to sort small amounts of unsorted data rapidly.

C. The process to sort large amounts of sorted data swiftly.

D. None of the above

9. Which of the following defines the Deep Copy Methods?

A. Original table DDL

B. like table

C. tempt able truncate

D. None of the above

10. Classic Resize means ------------.

A. Hours to days: only moves user objects.

B. Minutes: Migrate through the snapshot process

C. Both A and B

D. None of the above

11. Elastic resize means -------------------.

A. Hours to days: only moves user objects.
B. Minutes: Migrate through the snapshot process
C. Both A and B
D. None of them

12. Restoring from Snapshot is ---------------------.
A. Create a new cluster
B. Cluster configuration can be modified
C. Both A and B
D. None of the above

13. Which of the following option is used for loading data from S3?

A. Copy command can copy data from S3 into the existing table.
B. Unload command can export data from query to S3 in CSV or Parquet format.
C. Both A and B
D. None of the above

14. Which of the following is used to unload data to S3?
A. Copy command can copy data from S3 into the existing table.
B. Unload command can export data from query to S3 in CSV or
Parquet format.
C. Both A and B
D. None of them

15. Which of the following represents CloudWatch?
A. Provides a more granular view
B. Can be used to combine metric graphs
C. Both A and B
D. None of the above

CHAPTER 09: AWS GLUE, ATHENA, AND
QUICKSIGHT

Introduction
Construct Glue Crawler, perform SQL queries in Athena, and create
Visualization Charts with AWS QuickSight in this chapter.

Figure 9-01: Steps to Success

Glue Data Catalog
What is AWS?
Serverless ETL Service

Some important points about Serverless ETL services are:

No server provisioning
AWS fully manages them
Extract Transform load

Categorize, clean, and enrich your data
Move data between various data stores

AWS Glue - Use cases
Query Data in S3

Consider an example; you have a massive data lake in S3 with customer
feedback data. You can use AWS Glue to crawl your S3 data lake to
prepare tables that you can then query using Athena to see your
customer feedback.

Joining Data for A Data Warehouse

Consider an example; you have a Clickstream data lake in RDS and
customer data in S3. You can use Redshift Spectrum to Query your data
or QuickSight to visualize the data. You can use AWS Glue to join and
enrich your data and then load the results into Redshift.

Creating a Centralized Data Catalog

Consider an example; you have different types of stored in many other
locations. You can use AWS Glue to manage the metadata and create a
central repository. You can then access the Data Catalog for ETL and
analytics with many other AWS services.

AWS Glue Components
The data can be in a plethora of different locations; it can be in S3,
DynamoDB, RDS, Redshift, or a database on EC2. You can also have
databases outside of AWS, so as long as you can associate with them
using a JDBC connection, you will access that data as a data source
within AWS Glue.

Before AWS Glue knows anything about your data, you have to set up a
crawler. Consider bug representing a crawler; it crawls the database and

finds important information about that data or metadata. Then, it
stores that in the Data Catalog within AWS Glue. Data Catalog
comprises databases that are made up of tables that you can then query
or run ETL jobs on. ETL jobs are made up of either Scala code or Python
code. AWS allows us to write this code ourselves manually, or it can be
pre-generated. Once the job has been completed, we have some data
output sources where the data will be stored onto. The data can be held
onto places like S3, and then we can query it with Athena. We can store
this data in a Hadoop cluster in EMR. We can keep it in S3 or hold it
back into Redshift or any other JDBC connection. Not only can we store
the output of these ETL jobs on services like EMR, S3, and Redshift, but
we can also use services like Athena and EMR to query our data that is
in our input data sources. This uses the Data Catalog the metadata
about that data to be able to query it.

Figure 9-02: AWS Glue Components

Considering we have some data in S3, we can set up a crawler that
crawls the data present in S3. It tries to find the important information,
the metadata, the column names, the column types, and all of that
important metadata information about the data stored in S3. Then, it
creates tables within our Data Catalog. Once we have those tables
within our Data Catalog, we can use Athena to query that data and use
normal SQL querying syntax.

Consider we need to run some transformation job on that data. We
need to drop some columns or possibly change some column names.
We can set up a Glue job that runs either Python code or Scala code. In
this case, we will run some Python code. When the job is started, AWS
will spin up a group of servers that runs the principle that we have in
our Python code, and then it will make the transformations that we
specify. Once the job is complete, the servers are torn down by AWS,
and we can have the output of our transformed data onto S3. We could
set up another crawler to crawl that data to understand the metadata
about the newly transformed data. It will create tables in our Data
Catalog, and we can use Athena to query that new data or offload some
other type of analytics to our transformed data.

Figure 9-03: AWS Glue Components

AWS Glue Data Catalog
President Metadata Store

You can store, annotate, and share metadata between AWS services
(similar to Apache Hive megastore).

Centralized Repository

There is only one data catalog per AWS region, providing a uniform
repository so different systems can store and find metadata to query
and transform that data.

Provided Comprehensive Audit

You can stack schema changes and data access control. This helps
ensure that its data is not inappropriately modified or inadvertently
shared.

Demo 9-01: Populating the AWS Glue Data
Catalog

1. Login to AWS Management Console.

2. Click on the Bucket.

3. Select the object.
4. Click on Download under actions.

5. Open the downloaded file.

6. Search AWS Glue in the search bar.
7. Click on AWS Glue.

8. Click on Crawlers.
9. Click on Add Crawler.

10. Define Crawler name.
11. Click on Next.

12. Specify crawler source type.
13. Click on Next.

14. Include a path.
15. Choose the S3 path.
16. Click on Select.

17. Click on Next.

18. Click on Next.

19. Define IAM role.
20. Click on Next.

21. Define frequency.
22. Click on Next.

23. Define Database name.
24. Click on Create.

25. Click on Next.

26. Click on Finish.

27. Select Crawler.
28. Click on Run Crawler.

29. Click on Tables.
30. Select Crawler.

31. Click on Table.

32. See the details about the table.

Converting Semi-Structured Schemas to Rational
Schemas
Consider we have semi-structured data. AWS will convert the data into
a relational schema. The single value A converts directly to a relational
column. The pair of values B1 and B2 convert to two different relational
columns. The structure C that has children X and Y converts to two
relational columns. The array D converts to a relational column with a
foreign key that points to another relational table, along with a primary
key. The second relational table has columns that contain offsets and
values for the items within the array. We will have a foreign key that
points to a primary key, and the other columns within that table
contain an offset and the values for the items in the array. It allows you

to create that metadata catalog that you can query and start running
ETL jobs on.

Figure 9-04: Converting Semi-Structured Schemas to Rational Schemas

EXAM TIP:
What is AWS? – Fully managed ETL service to categorize, clean, and enrich
your data.
AWS Glue - Use cases – Query Data in S3, join data, and create a centralized
metadata catalog.
AWS Glue Components – Source data stores, crawlers, catalog, jobs, output
data store, or services using the data catalog.
AWS Glue Data Catalog – president Metabase store that is a centralized
repository.
Demo – Created a crawler that populated a table in our Glue Data Catalog.
Schema Conversions – Glue fattens a hierarchical schema to a logical schema.

Glue Jobs
AWS Glue Jobs
AWS Glue job performs the extract, transform, and load (ETL) work in
AWS Glue. You have some input data; consider the input data as the
fabric. The Glue job is where the actual work is being done; this is the
cleaning of your data, the transformation of your data, the enrichment

of your data, and the joining of your data. This will be the actual
physical labor and the tools that you use to create the final output.
Output data onto another data store or into some data lake or data
warehousing solution.

Figure 9-05: AWS Glue Jobs

Workflow Overview
The main part of the job is AWS's actual processing environment. The
data source can come from many different locations, but it has to be
from the data. First, we have to crawl data, whether that is S3,
DynamoDB, or JDBC connection, and create the tables within our data
catalog. Then we have to have a data target, set up a scaler or a Python
script, and then tell it to run on a particular interval, whether on-
demand or some schedule. For example, every Monday of every week or
the first Friday of every month. We can have the job run after some
event occurs, whether that is data landing onto S3 or some Lambda
function that triggers this event. Then, we will need to define the actual
code that will perform the transformation or the data loading and
processing that needs to be done where and when our data comes from
our data source and lands in our data target. AWS Glue jobs can author

the scripts from scratch by ourselves or use the generated PI Spark or
Scala script that AWS Glue creates for us. We can take this script and
tailor it to our business needs.

Figure 9-06: Workflow Overview

Lab 9-01: AWS Glue Jobs
Introduction

AWS Glue

Amazon Glue is a serverless data integration service that simplifies data
identification, preparation, and integration for analytics, machine
learning, and application development. Amazon Glue has all the tools
required for data integration, allowing you to begin analyzing and
utilizing your data in minutes rather than months. AWS Glue offers
both visual and code-based interfaces to help with data integration. The
AMAZON Glue Data Catalog allows users to discover and retrieve data
easily. ETL workflows may be created and executed by data engineers

and ETL (extract, transform, and load) developers. AMAZON Glue
DataBrew allows data analysts and data scientists to enhance, clean
visually, and standardize data without writing code.

AWS Simple Storage Service (S3)

Amazon S3 is a type of object storage that allows you to store and
recover any quantity of data from any location. It is a low-cost storage
solution with business resilience, reliability, efficiency, privacy, and
infinite expansion.

Amazon S3 is a web service that allows you to store and retrieve an
infinite quantity of data from any place and at any time. You may
quickly create projects that integrate cloud-native storage using this
service. Because Amazon S3 is easily customizable and you only pay for
what you use, you can start small and scale up as needed without
sacrificing performance or dependability.

Amazon S3 is also built to be highly adaptable. Instead of finding out
how to store their data, Amazon S3 allows developers to focus on
innovation. You can build a simple FTP system or a complex web
application like the Amazon.com retail website, read the same piece of
data a million times or only for emergency disaster recovery, as well as
store whatever type and amount of data you desire.

Problem

Assume you are a Data Analytics in an organization. The organization
you work in develops online games. The organization gives you a task
to integrate, transform, and store real-time data coming from an online
game that produces hourly GBs of user play data. Hence, how can you
automate this task?

Solution

The solution is to use AWS Glue Jobs for data integration operations,
such as extraction, cleaning, normalizing, combining, loading, and
performing scalable ETL procedures. It reduces the time it takes to
examine and use your data from months to minutes. For storing the
real-time data, you use the S3 bucket.

Note: Before starting the demo, create an s3 bucket and AWS Glue
crawlers used in this demo. How to create AWS crawlers is mentioned
in the above demo of AWS Glue Catalog.

Step 1: Create AWS Glue Job

1. Log in to the AWS Console.

2. Click on the Services.

3. Select the AWS Glue from the Analytics.

4. Click on the Jobs from the left-hand side menu.

5. Click on the Add Job button.

6. Give the job name ips-user-data-job.

7. Select the IAM role that you previously created in the
crawlers demo.

8. Select the Spark type.

9. Select the Glue Version 2.0.

10. Select the A proposed script generated by AWS Glue.

11. Click on the Monitoring options.

12. Select the Job Metrics and Continuous logging.

13. Click on the Security Configuration.

14. Scroll down. Select the G.1x worker type.

15. Click on the Next button.

16. Select the ips-s3-bucket.

17. Click on the Next button.

18. Select the Change Schema.

19. Click on the Next button.

20. Select the Create tables in your data.

21. Select the Amazon S3 data store.

22. Select the CSV format

23. Select the gzip compression type.

24. Click on the Folder button icon.

25. Select the ips-transformed-data folder in the ips-s3-
bucket.

26. Click on the Select button.

27. Click on the Next button

28. Delete the Cell and Phone data fields.

29. Delete the Nat data field.

30. Click on the Save job and edit script button.

31. Click on the Save button.

32. Click on the Run Job button.

33. Again, Click on the Run Job button.

34. It will take a few minutes as you see the Progress bar and
Driver logs.

35. The Progress bar finishes. This means that successfully ran
and created the AWS Glue job.

Step 2: Reviewing Store Data

1. Click on the Services.

2. Select the S3 from the Storage.

3. Click on the ips-s3-bucket.

4. Click on the ips-transformed-data folder.

5. You should see the zip files.

6. Select one of the files. Then click on Download.

7. Unzip the downloaded file. Open the file in any code editor
you will file like it was done in the below image.

Output File Formats
If we are storing data in a relational database or a JDBC connection, the
output file format would not matter. However, if we are storing it into
a file server or S3, we can have various output file formats as follows;

Output File Formats

JSON*

CSV*

ORC

Parquet

Avro

*optional compression (gzip,
bzip2)

Table 9-01: Output File Formats

EXAM TIP: The reason that JSON and CSV have an asterisk is that
we have the option of compressing that data before it is stored off.

Data Processing Units (DPUs)

Job Types
Minimum

DPUs
Maximum

DPUs
Default
DPUs

Cost per DPU

Apache
Spark

2 100 10
Region

Dependent
$0.44/hour

*$0.44 is the
most common
($0.52, $0.59,

$0.69)

Spark
Streaming

2 100 5

Python Shell 0.0625 or 1 1 0.0625

Table 9-02: Data Processing Units (DPUs)

Example
First Run

Apache Spark
Default 10 DPUs
$0.44/hour

30 minutes to run the job = ½ of an hour

½ * $0.44 = $0.22 per DPU

$0.22 * 10 DPUs = $2.20 per job
Second Run

Apache Spark
25 DPUs
$0.44/hour

10 minutes to run the job = 1/6 of an hour

1/6 * $0.44 = $0.073 per DPU

$0.073 * 25 DPUs = $1.82 per job
Third Run

Apache Spark
75 DPUs
$0.44/hour

6 minutes to run the job = 1/10 of an hour

1/10 * $0.44 = $0.044 per DPU

$0.044 * 75 DPUs = $3.30 per job

Note:

AWS Glue Version 2.0 is billed in 1-second increments with a 1-minute
minimum.
AWS Glue Version 0.9 and 0.1 are billed in 1-second increments with a 10-
minute minimum.

EXAM TIP: You can use CloudWatch metrics to determine under or
over-provisioned DPUs in the cluster by monitoring the total number
of actively running executors, the number of completed stages, and
the number of maximum needed executors.

Glue Jobs Run In Isolated
Glue Runs Jobs on Virtual Resources

All the resources needed to run ETL jobs are provisioned and managed
in its isolated service account.

What a Glue Job needs?

You provide output data sources and input data targets in your VPC. In
addition, you give the IAM role, VPC ID, subnet ID, and security group
that is needed to access data sources and targets.

Traffic governed by Your VPC

Traffic in, out, and within the spark environment is determined by your
networking policies. The one exception by your networking policies is
calls made to the AWS Glue API. However, these can be audited
through CloudTrail.

EXAM TIP:
AWS Glue Jobs – Glue jobs are the business logic that performs ETLs work in AWS Glue.

Workflow Overview – Various parts are needed for an AWS Glue job.

Output Data Formats – The different output formats Glue Jobs can perform.

Data Processing Units (DPUs) – The units used for processing your Glue Jobs.

Glue Jobs Run In Isolated – Glue Jobs run on virtual resources, Glue jobs needs, and how
traffic is governed.

Job Bookmarks
Explanation
Consider an S3 bucket that has some files in it. It will not only have a
few files, but it may have a lot of files. Consider we create a Glue job
with Scala or Python code that does simple transformations. The Glue
job will scan the files and make the transformations. These
transformations might be dropped to the relevant fields. It may change
some column names or compress the output of the data. Once the Glue
job finishes, it will store this data off into S3 and perform whatever type
of transformation we want. In this case, we dropped the irrelevant
fields, changed the column names, and compressed the output, so we
zipped up the files.

Figure 9-07: Job Bookmarks

Consider we add more files to our S3 bucket. If we rerun this job, the
only files that will be scanned are the new files added to the S3 bucket.

Job Bookmarks Defined
AWS Glue is a serverless environment for extracting, transforming, and
loading massive amounts of data from a variety of sources for analytics.
When rerunning a task on a scheduled interval, it features a job
bookmarks that process incremental data. The states for various task
elements, such as inputs, transformations, and targets, make up a job
bookmark. This is accomplished by storing state information from a job
run, which aids AWS Glue in avoiding the reprocessing of outdated
data.

Options For Job Bookmarks

Job Bookmark Description

Enabled

Motives the job to update the
state after a run to keep track of
previously processed data. If new

data is processed, it will start
from the last checkpoint.

Disabled
Job Bookmarks are not utilized

and the job always processes the
entire dataset. This is the default.

Pause

Processes incremental data
defined by a from-value and to-
value range. The data is after the
from-value job and before the to-

value appointment (inclusive).

Table 9-03: Options for Job Bookmarks

The green files represent processed files, and the white files represent
files that have not been processed yet.

Whenever the job bookmarks are set to enable, the only files that will
be processed are the white files. When the job bookmarks are disabled;
it will process the entire data set.

Whenever the job bookmarks are set to pause bookmark, consider we
ran several different Glue jobs already. In the first job, we process two
files; in the second job, we process a file; in the third job, we process
two files; and in the 4th job, we process the single file, while some files
have not been processed yet. Whenever we set up the pause job
bookmark, we need to set up a from-value and a to-value. In this case,
we will set the from-value to job number 2 and the to-value to job
number 4. It will process everything after job 2 until job 4, including job
4. This case will process all the data in job 3 and job 4, so any new data
after job 4 or after the two values will not be processed.

Figure 9-08: Job Bookmarks

Demo 9-01: How To Set Up Job Bookmarks
1. Login to AWS Management Console.
2. Click on AWS Glue.

3. Click on Jobs.
4. Click on Edit Job under actions.

5. Define Job bookmark.
6. Click on Save.

7. Click on Run Job under action.

8. Define Job bookmark.
9. Click on Run Job.

10. Job is running.

Getting Started with Athena
What Is Athena?
Athena helps to easily query your S3 data. You can use standard SQL
queries to analyze data directly in S3. Athena is serverless, and you can
only pay for the queries that you run. Athena automatically scales, so
results are fast, even with large datasets and complex questions.

Athena Federated Queries

Athena could only query data in S3, but since customers have data in
other data sources, AWS created the ability to connect to external data
sources using Athena federated queries. Athena uses data source
connectors to run on AWS Lambda to run federated queries. A data
source connector is a section of code that can translate between Athena
and your target data source. With this new feature, you can query data
in places or build pipelines to extract data from multiple data sources,
such as CloudWatch Metrics, DynamoDB, Elasticsearch, JDBC
compliant data sources like Redshift and RDS, and store the query
results in S3.

Figure 9-09: Athena federated Queries

EXAM TIP: If you have data in sources other than S3, you can use

Federated Query (beta) to query the data in place or build pipelines
that extract data from multiple data sources and store them in
Amazon S3.

Athena Data Formats And Integrations
Data Formats
Athena helps you analyze unstructured, semi-structured, and
structured data stored in S3. Examples include CSV, TSV, JSON,
Textfiles, Parquet, ORC, and Snappy, Zlib, LZO, and GZIP.

Integrates With QuickSight

Create easy data visualizations by using Athena to generate reports to
explore data with BI tools of SQL clients connected with JDBC and
ODBC drivers.

Integrates With AWS Glue

Athena Integrates with AWS Glue Data Catalog, allowing you to create
tables and query data in Athena as well as use the ETL and data
discovery features of AWS Glue.

Connecting to Data Sources
Athena natively supports querying datasets and data sources that are
registered with the Glue Data Catalog. You can have a data connector
using an external Hive metastore to query datasets in Amazon S3. You
can also use a data connector for external Hive meta stores to query
data in S3 that is using an Apache Hive metastore. You do not have to
migrate your Hive metastore data to the AWS Glue Data Catalog.

Figure 9-10: Connecting to Data Sources

EXAM TIP: Athena natively supports querying datasets and data
sources registered with the Glue Data Catalog.

More On Integrations

AWS Services Integrations

CloudTrail
Query CloudTrail logs to analyze

AWS service activity

CloudFront

You can query CloudFront logs to
explore user’s surfing patterns
across your content served by

CloudFront

Elastic Load Balancing

You can query logs and see the
traffic, latency, and bytes

transferred to and from Elastic
Load Balancing instances and

backend applications

Query VPC flow logs about the IP

VPC (Flow Logs) traffic going to and from the
network interface in a VPC

CloudFormation
Create Athena components using

CloudFormation

IAM
Using IAM, you can control

Athena API actions using
permission policies

Systems Manager Inventory
You can query inventory from

multiple AWS regions and
accounts

Table 9-04: AWS Services and Integration

Athena Use Cases
Ad-Hoc and BI Tools

Athena is an easy-to-use tool for ad hoc queries and business
intelligence tools integrations. We can do this by setting up a Glue Data
Catalog from a variety of data sources. We can use Glue to perform ETL
jobs if we clean, enrich, or transform our data. Once we have our
metadata information in our Glue Data Catalog, we can use services like
Athena, Redshift Spectrum, and EMR to further run ad hoc queries or
other processes and analyze our data. We can use BI tools like
QuickSight or Tableau to visualize our data, create some dashboards,
share them, and create reports for management.

Figure 9-11: Use Cases - Ad-hoc And BI Tools

Joining Data

Assume we have some frequently accessed data stored in Aurora and
some historical or cold data stored in S3. We can set up a Glue Data
Catalog with metadata information about these datasets and schemas
to perform joins on frequently accessed data in Aurora and our
historical data stored in S3. When a user comes in and requests API
Gateway, our data's querying and joining can occur and send. We can
use Athena to join data from relational databases and data that sits in
S3.

Figure 9-12: Use Cases - Joining Data

ETL Pipelines and Integrations

The last use case is creating ETL pipelines with data like AWS service
logs or application logs as well as data from external vendors. This data
is typically stored in S3 as raw data or as a data lake. We can utilize
Athena and Glue Data Catalog to create a table SELECT AS and insert
statements to perform ETL processes on that data. Then, we can store
that transformed data back into S3, allowing us to partition and convert
it into a columnar data format to optimize it for data analysis. Once the
data is transformed, we can then use Athena to query the data and
return the important information we seek.

Figure 9-13: Use Cases - ETL Pipelines and Integrations

EXAM TIP:
What Is Athena? – Serverless querying tool to easily query data in S3.
Athena Data Formats And Integrations – Various file formats and compressions
Athena can query, and many serve Athena can integrate with.
Athena Use Cases – Ad-hoc queries, joining data from multiple data sources,
creating ETL pipelines, and transforming your data

Demo 9-02: Amazon Athena

Introduction

1. Amazon Athena

Amazon Athena is a query service that allows you to examine data in
Amazon S3 using conventional SQL easily. Because Athena is serverless,
there is no infrastructure to set up or operate. You can begin analyzing
the data right away. You do not even need to import your data into
Athena; it works with S3 data immediately. You can log into the Athena
Management Console, specify your schema, and begin querying.
Amazon Athena deals with several common data formats, including

CSV, JSON, ORC, Apache Parquet, and Avro. It also leverages Presto
with full standard SQL support. At the same time, Amazon Athena is
perfect for ad-hoc querying and connects with Amazon QuickSight for
rapid visualization. It can also perform complicated analyses, such as
massive joins, window functions, and arrays.

2. AWS Glue

Amazon Glue is a serverless data integration service that simplifies data
identification, preparation, and integration for analytics, machine
learning, and application development. Amazon Glue has all the tools
required for data integration, allowing you to begin analyzing and
utilizing your data in minutes rather than months. AWS Glue offers
both visual and code-based interfaces to help with data integration. The
AMAZON Glue Data Catalog allows users to discover and retrieve data
easily. ETL workflows may be created and executed by data engineers
and ETL (extract, transform, and load) developers. AMAZON Glue
DataBrew allows data analysts and data scientists to enhance, clean
visually, and standardize data without writing code.

3. AWS Simple Storage Service (S3)

Amazon S3 is a type of object storage that allows you to store and
recover any quantity of data from any location. It is a low-cost storage
solution with business resilience, reliability, efficiency, privacy, and
infinite expansion.

Amazon S3 is a web service that allows you to store and retrieve an
infinite quantity of data from any place and at any time. You may
quickly create projects that integrate cloud-native storage using this
service. Because Amazon S3 is easily customizable and you only pay for
what you use, you can start small and scale up as needed without

sacrificing performance or dependability.

Problem

Assume you are a Data Analytics engineer in an organization. The
organization runs many e-commerce platforms such as clothing,
smartphones, and grocery items. They want you to do customers' real-
time streaming stored data analysis using SQL queries. So, how can you
automate this task?

Solution

The solution is to use the AWS Athena service. Athena does not have
any servers. You do not need to set up or operate any servers or data
warehouses to query your data rapidly. Point to your data on Amazon
S3, set the schema, and use the built-in query editor to begin querying.
Amazon Athena allows you to access all of your data in S3 without
having to put up sophisticated data extraction, transformation, and
loading processes (ETL). You also use AWS Glue to transform the store
data into the S3 bucket.

Note: Before starting the demo, create an S3 bucket.

Step 1: Create AWS Glue Job

1. Log in to the AWS Console.

2. Click on the Services.

3. Select the AWS Glue from the Analytics.

4. Click on the Jobs from the left-hand side menu.

5. Click on the Add Job button.

6. Give the job name ips-flatten-data-job.

7. Select the IAM Role which you previously created in the
AWS Glue Job demo.

8. Click on the Monitoring option.

9. Select the Job Metrics and Continuous logging.

10. Click on the Next button.

11. Select the ips-s3-bucket, and then click on the Next button.

12. Select the Change Schema, and then click on the Next
button.

13. Select the Create tables in your data target.

14. Select the Amazon S3 data store.

15. Select the CSV format.

16. Select the gzip compression type.

17. Click on the Folder button icon.

18. Select the ips-transformed-data folder in the ips-s3-
bucket. Then, click on the Select button.

19. Click on the Next button.

20. Scroll down, and click on the Save job and edit script
button.

21. Click on the Save button.

22. Click on the Run Job button.

23. Again, click on the Run Job button.

24. It will take a few minutes as you see the Progress bar and
Driver logs.

25. The Progress bar finishes. This means that successfully run
and created the AWS Glue job.

26. Go to the S3 dashboard; you will see the compressed files.

Step 2: Create AWS Glue Crawler

1. Navigate back to the AWS Glue tab.

2. Click on Crawlers from the left-hand side.

3. Click on the Add Crawler button.

4. Give a name ips-flatten-data-crawler. Then, click on the
Next button.

5. Leave everything as default, scroll down and click on the
Next button.

6. Select the S3 data store.

7. Click on the Folder icon button.

8. Select the ips-transformed-data folder in the ips-s3-
bucket. Then, click on the Select button.

9. Click on the Next button.

10. Select No when prompted to add another data source. Then
click on the Next button.

11. Select the Choose an existing IAM role.

12. Select the IAM Role that you previously created in the demo.
Then, click on the Next button.

13. Select the Frequency Run on demand. Then, click on the
Next button.

14. Select the ips-user-data-database.

15. Click on the Next button.

16. Click on the Finish button.

17. Select the ips-flatten-data-crawler.

18. Click on the Run Crawler button.

19. After running finish, one table is added.

20. Click on Tables from the left-hand side menu.

21. You will see the ips-transformed-data table.

Step 3: Execute SQL Quires on AWS Athena

1. Click on Services.

2. Select Athena from Analytics.

3. Click on the Explore the query editor button.

4. Click on the Options icon of ips-transformed-data.

5. Click on Preview table.

6. After that, you will run the real-time SQL quires and do real-
time data analytics.

7. Copy and paste the below query in the query editor.

SELECT "dob.age", COUNT("dob.age") AS occurances

FROM ips_transformed_data

GROUP BY "dob.age"

ORDER BY occurances DESC

LIMIT 5;

8. Click on the Run Query button.

9. Hence, you can see the output.

10. Click on the + icon to open a new tab on the query editor.

11. Copy and paste the below query in the query editor.

SELECT gender, (COUNT (gender) * 100.0 / (SELECT

COUNT(*) FROM ips_transformed_data)) AS percent

FROM ips_transformed_data

GROUP BY gender;

12. Click on the Run Query button.

13. Hence, you can see the output.

When To Use Athena
S3 Select And Glacier Select

S3 Select – Use SQL statements to filter the contents of S3
objects and retrieve just the subset of data you need.
Glacier Select - Use SQL statements directly on your data in
S3 Glacier without restoring data to a more frequently
accessible tier.

Overview Of Similar Services

Redshift EMR Athena S3 Select
Glacier
Select

Fats querying,

Simple to
run

Queries

enterprise
reporting,

and BI
workloads

distributed
processing

frameworks
like Hadoop,
Spark, and

Presto

Easily run
ad-hoc

queries for
data in S3

Retrieves a
subset of
data from
an object

Glacier
data

within
minutes

Very complex
SQL

(multiple
joints and

sub-queries)

Flexible
enough to

run custom
applications

and code

No need to
set up and

manage
servers

Offload
filtering

data in S3
instead of

your
application

Use
standard

SQL
statements

Bringing data
from many

different data
sources into a

common
format

You define
the

compute,
memory,

and storage
to optimize
workloads

No need to
format

data

Simple SQL
expressions

No need to
restore to

S3

Storing data
from long

periods

It can be
used with
EMR and

Redshift as
an

integrated

Limited
data

formats
CSV, JSON,

Parquet
(GZIP and
BZIP2 for

Build
Sophisticated

business

reports from
historical

data

data
catalog

CSV and
JSON)

Table 9-05: Overview of Similar Services

Comparing Athena To Other Services
Redshift and Athena

Redshift Athena

Needs to pull data from various
sources
We have built sophisticated
business reports with complex
queries

Data must be stored in S3
Run quick queries for
troubleshooting and analytics

Table 9-06: Redshift and Athena

EMR and Athena

EMR Athena

It goes far beyond just running
queries
Custom code to process and
analyze massively large datasets

Less of a large-scale data
processing solution
More of an ad-hoc querying
tool
Serverless – no need to manage
the cluster

Table 9-07: EMR and Athena

S3 Select, Glacier Select, and Athena

S3 Select And Glacier Select Athena

No need to query a single
object in S3
It can return just a few bytes in
a large object
Query in-place, then return the
data

Need to query all results in a
bucket
More powerful, fully interactive
query service
Complex analysis, large joins,
window functions, and arrays

Table 9-08 Select, Glacier Select, and Athena

QuickSight Visualizations and Dashboards
Amazon QuickSight
Amazon QuickSight helps to create visualization and dashboard with
your data. Business intelligence tool makes it easy to create
visualization and dashboard from your data. Simply point QuickSight at
your input data source to start creating visualizations.

Figure 9-14: Amazon QuickSight

How QuickSight Works?
Once we sign up for a QuickSight account, we need to start with
connecting our data. This data can be AWS data. It can be applications
either running in AWS or on some third-party websites or servers, it
can be running on-premises, or we can use files, text files, CSV files, and
JSON files. We can use relational data, where all of these services are
included right out of the box whenever you start a QuickSight account
to connect Athena, Aurora, Redshift, Redshift Spectrum, S3, S3 and
AWS IOT analytics. We have running inside the AWS or outside of
AWS that we can connect with QuickSight like Apache spark, MariaDB,
Microsoft SQL Server, MySQL PostgreSQL, Presto, Snowflake, and
Teradata. We can import files right into CSV and TSV files, ELF and
CLF files, JSON, and even Excel spreadsheets. We can use zip and Gzip
files that reside in S3. We also have software as a service data that we
can connect into QuickSight, such as Jira data from ServiceNow, Adobe
Analytics data from GitHub, Salesforce, and data from Twitter.

Figure 9-15: QuickSight Working

Once we have decided what data we want to load into QuickSight or
start visualizing, we then load that data into a place called SPICE
(Super-Fast Parallel In-Memory Calculation Engine). We want to use
SPICE because it is engineered to perform advanced calculations and
serve our data rapidly. We do not have to make API calls or query our
data each time we create a visualization.

Figure 9-16: QuickSight Working

Spice
Analytical queries process faster
You do not need to wait for a direct query to process
Data stored in SPICE can be reused multiple times without
incurring additional costs
The SPICE capacity is allocated separately for each AWS
region

You can also do direct queries, and once you run these direct queries or
take your data from the SPICE engine, you can start examining your
data. You can create visualizations and design different charts and

graphs. From there, you can make charts and graphs, create
dashboards, and share those dashboards with either other developers
with upper management or your end-users. These people need to see
analytics about either specific data within your application or detailed
data about their applications. A dashboard is like a collection of charts
and graphs with insights.

Figure 9-17: QuickSight Working

Visualization types
Bar Charts
Combo Charts
Donut Charts
Gauge Charts (Maps)
Heat Maps
Histograms
KPIs
Line Charts

Pie Charts
Scatter Plots
Tree Maps
Word Clouds

Figure 9-18: Visualization Types

QuickSight Dashboards
Specify User Access

When sharing a dashboard, you specify which user has access to it.

Dashboard Viewers vs. Owners

Dashboard viewers have limited access (viewing, filtering, sorting).
Owners can share the dashboard and optionally edit and share the
analysis.

Embedded In Website or Application

A shared dashboard can be embedded only in a website or app if
QuickSight is set up as an Enterprise edition.

EXAM TIP:
Amazon QuickSight is a business intelligence (BI) tool that makes it easy to
create a visualization and dashboard from your data.
How QuickSight works – Connect to your data source, load the data into SPICE,
and then start the analysis.

QuickSight Dashboards – Specify which user has access to the dashboard,
viewers vs. owners, and embed the dashboard into a website or other
applications.

QuickSight Security and Authentication
QuickSight Data Encryption
Encryption at Rest (Enterprise edition only)

All of the metadata and data uploaded into SPICE is encrypted with
AWS-managed keys.

Encryption in Transit

QuickSight supports encryption of all data transfers using SSL. This
includes data to and from SPICE and from SPICE to the user interface.

Key Management

AWS manages all the keys associated with QuickSight. Database server
certificates are the responsibility of the customer.

Connecting To AWS Resources
We can connect to resources in AWS, for example, services like
Redshift, RDS, Aurora, and databases on EC2. Make sure that all of
these security mechanisms are set up and configured properly to allow
QuickSight access to these resources. We can also connect QuickSight
into S3. We will need to make sure that IAM roles, the bucket policy,
and the manifest file are set up properly, which is essentially just a
metadata file that allows QuickSight to connect the dots and better
understand the data schema S3.

Figure 9-19: Connecting To AWS Resources

We have two different ways to connect; we can either connect manually
or use auto-discovery. With manual connect, the username you are
using to connect QuickSight to the database must have special
permission on system tables. QuickSight can discover table schemas
and estimate table size, and for auto-discovery, the resources must be
in the same region as your QuickSight account. Whenever setting up a
QuickSight account, it will be in a particular region. If you are trying to
use auto-discovery, the resources you are trying to connect need to be
in the same region.

Figure 9-20: Ways to Connect

We have a Redshift cluster that will run in AWS, and it will be inside of
a VPC. Most of the time, this Redshift cluster runs in a private subnet.
We will have a security group associated with our Redshift cluster. By
default, QuickSight is not allowed to access because the security group
has not been set up properly or allows inbound rules from the
QuickSight endpoint or the QuickSight IP address. Assume it has a
bunch of more rules, but for this example, it has no rules. We need to
specify the type as a TCP custom protocol and ensure the class is set up
correctly as a TCP rule, where the protocol is TCP. The port range is the
port that our Redshift cluster is running on, and in the source is the
QuickSight IP range that we saw in the documentation. If we use auto-

discovery, they need to be in the same region but manually connecting;
they could be in separate areas. Once we have set it up properly, we can
communicate with QuickSight.

Figure 9-21: Example

EXAM TIP:

Allowing Access to VPC Resources: For Amazon Quicksight to
connect to a private VPC resource, the security group must contain an
inbound rule authorizing access from the appropriate IP address
range for the QuickSight serves in the AWS Region:

RDS Instance
Redshift Clusters
EC2 Instances

Identity And Access Management In Quicksight

After creating dashboards and visualizations, you want to give users
access to that data or those visualizations, so you need to find a way to
make sure that you can set up your users within QuickSight. We have
our QuickSight dashboards; they sit on the public internet. We can set
up users either using IAM credentials or have QuickSight only users
with just email addresses, but these are filtered through IAM.

There are many different ways to get users signed into your application.
If you have your user directories, you can use IAM integration to give
users access to dashboards. You can use third-party services like Octa
and other SAML services and use single sign-on to ensure users have
access. If you are using the standard edition and not the enterprise, you
would not be able to take advantage of these integrations for your
users.

Figure 9-22: Identity and Access Management in Quicksight

Best Practices For Security

Security
Feature

Best Practice

Firewall

Allow access to HTTPS and WebSockets (wess: //)
protocol. This allows QuickSight to reach a
database that is not on AWS. Change the non-AWS
server’s firewall configuration to accept traffic from
the appropriate QuickSight IP range.

SSL
Use SSL to connect to your database. Using SSL
with QuickSight requires the use of publicity-
recognized certificate authorities.

Enhanced
Security

Encrypt data stored at rest in SPICE.
Integrate Active Directory and SSO authentication.
Securely access data in private VPCs and on-premises.
Limit access to data with low-level security.

VPC

Use a VPC for data in AWS data sources. Utilize
AWS Direct Connect to create a secure, private
connection to link your on-premise resources to
your VPC and QuickSight.

Table 9-09: Best Practices for Security

EXAM TIP: Quicksight Data Encryption – How data is encrypted at
rest, transit, and key management.

Mind Map

Figure 9-23: Mind Map

Practice Questions

1. What is AWS?

A. Fully managed ETL service to categorize, clean, and enrich your
data.

B. Query Data in S3, join data and create a centralized metadata
catalog.

C. Source data stores, crawlers, catalog, jobs, output data store, or
services using the data catalog.

D. None of the above

2. AWS Glue use cases to ------------.

A. Query Data in S3

B. Join data

C. Create a centralized metadata catalog.

D. All of the above

3. AWS Glue Components are ----------------.

A. Source data stores, output data

B. Crawlers, store

C. Catalog, services using the data catalog.

D. Jobs.

E. All of the above

4. AWS Glue job --------------------.

A. Extract

B. Transform

C. load (ETL) work in AWS Glue

D. All of the above

5. The reason that JSON and CSV have an asterisk in output file
format is that we have the option of ------------------- that data before
it is stored off.

A. Compressing

B. Decompressing

C. Both A and B

D. None of the above

6. AWS Glue Version 2.0 is billed in ------------- increments with a 1-
minute minimum.

A. 0.1-second

B. 1-second

C. 0.01-second

D. None of the above

7. AWS Glue Version 0.9 and 0.1 are billed in ---------- increments
with a 10-minute minimum.

A. 1-second

B. 0.1-second

C. 0.01-second

D. None of them

8. You can use ------------ metrics to determine under or over-
provisioned DPUs in the cluster by monitoring the total number of
actively running executors, the number of completed stages, and the
number of maximum needed executors

A. CloudWatch

B. Athena

C. S3

D. None of the above

9. -------------- are the business logic that performs ETLs work in AWS
Glue.

A. CloudWatch

B. Athena

C. AWS Glue jobs

D. None of the above

10. Data Processing Units (DPUs) are defined as --------------.

A. The units used for processing your Glue

B. The units used for processing your database

C. The units used for processing your VPC

D. None of the above

11. Glue Jobs run on ---------------------.

A. Virtual resources
B. Glue jobs needs
C. How traffic is governed
D. All of the above

12. If you have data in sources other than ---------------, you can use
Federated Query (beta) to query the data in place or build pipelines
that extract data from multiple data sources and store them in

Amazon S3.
A. S3
B. CloudWatch
C. Athena
D. None of the above

13. Athena natively supports -----------------.
A. Querying datasets
B. Data sources registered with the Glue Data Catalog
C. Both A and B
D. None of the above

14. What Is Athena?
A. Serverless querying tool to easily query data in S3
B. Serverless querying tool to easily query data in CloudWatch
C. Serverless querying tool to easily query data in VPC
D. None of the above

15. Athena Use Cases are -----------------------.
A. Ad-hoc queries
B. Joining data from multiple data sources
C. Creating ETL pipelines and transforming your data
D. All of the above

CHAPTER 10: EL ASTICSEARCH

Introduction to Elasticsearch
The Amazon Elasticsearch Service is a managed service that makes
deploying, operating, and scaling Elasticsearch in the AWS Cloud
simple. Elasticsearch is a prominent open-source search and analytics
engine for log analytics, real-time application monitoring, and
clickstream analytics, among other applications.

With Amazon Elasticsearch Service, you have direct access to the
Elasticsearch open-source API, allowing you to reuse code and
applications from your existing Elasticsearch setups. Kibana is
incorporated into the Amazon Elasticsearch Service, allowing you to
easily display and analyze your data.

Figure 10-01: Steps to Success

Elasticsearch Service
The Amazon ElasticSearch service is a search domain that runs most of
the ELK (ElasticSearch Logstash and Kibana) stack. The service created
with ElasticSearch is called search domains. They come pre-installed
with ElasticSearch and Kibana Logstash; it is a fairly complex system all
on its own, but it does have tight integration with ElasticSearch.

Searching
ElasticSearch organizes data as indexes. The purpose of ElasticSearch is
to enable word searching. It is a search engine utility. The way that
searching works is called a reverse index. For example, we take two
documents; ElasticSearch will index each word in two documents.
Essentially, this service creates an index and can define some
characteristics about it, and it puts every word in these two documents
in all of the documents and stores it into that index. Part of the
metadata in that index is which documents those words appear in and
exactly where they are within that document. We get this mapping of
all of the words in each document in the store. This is very powerful
because it can return those documents very quickly, so we can search
for words or phrases and find them very quickly.

Figure 10-02: Searching

Logs Into Data
Logitech

Ingests, processes, and stores log data.

Kibana

Web utility interface for Elasticsearch and visualization engine.

EXAM TIP: The Amazon ElasticSearch service is a search domain
that runs most of the ELK (ElasticSearch Logstash and Kibana)
stack.

Using Elasticsearch
JSON All the Way Down
Index

Top-level organizational unit.

Type

The second level is used to categorize data.

Document

Elasticsearch data object.

Figure 10-03: JSON All the Way Down

The Interface
Elasticsearch uses a REST (Representational State Transfer) API for its
interface. JSON is a common format for REST APIs. With the standard
HTTP methods, we can interact with Elasticsearch; assuming that we
have all the permissions open, we can send a GET to the base URL, then
the index name, and provide a type and item ID. It will return that
item.

We have a few other options if we break that down. If we put either the
index or the item ID, it will add a document to either that index or item

ID. If we do it to just the index, it will generate an ID. If we use a post,
we can post a new type, which will let us set the definition for that type,
but we cannot send something straight to the index. It would not
generate an ID. The delete technique can also be used to delete
individual items or an entire index. You can delete a type, although this
is not particularly useful because it will invalidate any indexes that use
it.

Figure 10-04: The Interface

Loading Data
Anything that can interact with the API can send data into
Elasticsearch. We will have to write the actual code to send that data
into Elasticsearch, but it is just interacting with an API.

Figure 10-05: Loading Data

Demonstration Pipeline
For example, you have set up a Lambda function that scrapes the AWS
subreddit. It loads that data into a DynamoDB table, and then from the
stream on that table, we are loading data into our Elasticsearch domain.
The stream processor deserializes the data. It is not in the DynamoDB
JSON format, and it loads it into Elasticsearch's documents.

Figure 10-06: Demonstration Pipeline

Service Integration
Kinesis Data Firehose

Elasticsearch is a configurable target.

Cloudwatch

CloudWatch Logs subscription can deliver to Elasticsearch Service.

IoT

IoT rules can send data to Elasticsearch Service.

Demo 10-01: Querying Elasticsearch
1. Login to “AWS Management Console.”
2. Search “Elasticsearch Service” under find services.

3. Click on “Elaticsearch Domain.”

4. We can see an internet endpoint, and it has a little 1200 documents to search.

5. We can see Cluster Metrics and Overall Health.

6. We can see Instance Health.

7. We can see Indices.

8. There are several logs available.

9. We can see Packages.

10. You can create cross-cluster search connections.

11. You can query against the domain.

12. The query will return all the documents that have S3 somewhere in the body.

13. To import some Elasticsearch functions, run content in the script.

14. Log in to “Open Distro for Elasticsearch.”

15. Put in the “Body: S3.”
16. Click on “Update.”

17. Run the query.

18. Edit the query.
19. Click the “Arrow” to send the request.

EXAM TIP:
JSON All the Way Down – Elaticsearch uses JSON for everything
The Interface – REST interface, GET, PUSH, DELETE, POST
Loading Data – Elasticsearch can ingest data from anything that can generate
JSON
Service Integration – Kinesis Firehose, CloudWatch, and IoT Have built-in ES
integration

Visualizing Elasticsearch Data
Visualization Tools Examples

Kibana
Part of ELK stack
Pre-installed on Elasticsearch Service (ES) domains
It does not require writing extra code

D3j3
They are easily embedded in external applications
Can visualize any JSON formatted data
Third-party connectors are available

What can We Visualize?
Document Statistics

Utilize various functions and filters to create statistical information
about documents.

Numerical Data

Numerical data can be visualized or utilized to organize or filter
document data.

Lab 10-01: Implementing an Elasticsearch (OpenSearch) Backed
Search Microservice

Introduction

1. Amazon Elasticsearch (OpenSearch)

Interactive log analytics, real-time application monitoring, web search,
and other duties are made easier with Amazon OpenSearch Service.
OpenSearch is a distributed search and analytics package based on
Elasticsearch that is open source. Amazon OpenSearch Service provides
the most recent versions of OpenSearch, support for 19 Elasticsearch
versions (1.5 to 7.10), and visualization features driven by OpenSearch
Dashboards and Kibana (1.5 to 7.10 versions).

2. Amazon API Gateway

Amazon API Gateway is a fully managed service that enables developers
to effortlessly publish, administer, monitor, and secure APIs of any size.
You can develop an API that serves as a "front door" for apps to access
data, business logic, or functionality from your backend services, such
as those operating on your server. Amazon Elastic Compute Cloud
(Amazon EC2), Amazon Elastic Container Service (Amazon ECS), or
AWS Elastic Beanstalkcode running on AWS Lambda, or any web
application, with a few clicks in the AWS Management Console.
Accepting and processing hundreds of thousands of concurrent API
calls, including traffic management, authorization, access control,
monitoring, and API version management, is supported by Amazon API
Gateway. There are no minimum fees or initial charges with Amazon
API Gateway. You only pay for the API requests you receive and the
amount of data transmitted out when using HTTP APIs and REST APIs.
You only pay for messages delivered and received, as well as the time a
user/device is connected to the WebSocket API.

3. Amazon Lambda

AWS Lambda allows you to run code without creating or managing
servers. There is no charge when your code is not executing; you only
pay for the compute time you use. You can run code for nearly any
application or backend service with Lambda, and you do not have to
worry about administration. Upload your code, and Lambda will handle
everything necessary to run and grow it with high availability. You may
configure your code to be automatically triggered by other AWS
services, or you can access it directly from any computer or smartphone
app.

4. Amazon Simple Storage Service S3

Amazon S3 is a type of object storage that allows you to store and
recover any quantity of data from any location. It is a low-cost storage
solution with business resilience, reliability, efficiency, privacy, and
infinite expansion.

Amazon S3 is a web service that allows you to store and retrieve an
infinite quantity of data from any place and at any time. You may
quickly create projects that integrate cloud-native storage using this
service. As Amazon S3 is easily customizable and you only pay for what
you use, you can start small and scale up as needed without sacrificing
performance or dependability.

Amazon S3 is also built to be highly adaptable. Instead of finding out
how to store their data, Amazon S3 allows developers to focus on
innovation. Build a simple FTP system or a complex web application
like the Amazon.com retail website. Read the same piece of data a
million times or only for emergency disaster recovery; store whatever
type and amount of data you desire.

Problem

Assume you are a Data Analytics Engineer in an organization. The
organization wants you to integrate a function in the website to provide
statistical information about the appearance of words and phrases in
any novel. How can you create this type of functionality in the website?

Solution

The solution is using AWS services to achieve this functionality in the
website. You use AWS Elasticsearch, which name was changed to
OpenSearch by AWS. You use the AWS Lambda and AWS API Gateway

as backend services in the website. For hosting the static website, you
will use the AWS S3 hosting service.

Note: Before starting the lab, create a Lambda function and
Elasticsearch (OpenSearch) cluster.

Figure 10-07: Implementing an Elasticsearch (OpenSearch) Backed Search
Microservice

Step 1: Review the Elasticsearch (OpenSearch) Query in
Kibana

1. Log in to the “AWS Console.”

2. Click on the “Services.”

3. Select the “Amazon OpenSearch Service” from the
“Analytics.”

4. Click on the “frankensearch” domain.

5. Open the “Kibana” URL in a separate browser tab.

6. Log in to the “Kibana.”

7. Select the “Private.”

8. Click on the “Confirm” button.

9. Click on the “Menu” icon in the top left corner.

10. Click on the “Dev Tools.”

11. Copy the search query from below and paste it into the
query editor.

GET _search

{

 "query": {

 "simple_query_string": {

 "query": "Horse~20",

 "default_operator": "and"

 }

 }

}

12. Click on the “Play” icon button.

13. The output shows 29 hits.

14. Delete the “~20” parameter from the “query” line to remove
any fuzziness in the query editor.

15. Click on the “Play” icon button.

16. The output shows “0” hits.

Step 2: Update the Lambda Function

1. Click on the “Services.”

2. Select the “Lambda” from the “Compute.”

3. Click on the “fraken_search” function.

4. Click on the “function.py.”

5. Here, you add the main functionality of the website.

6. The following provides a Github link of the code used in this lab.
AWS-Certified-Data-Analytics---
Speciality/blob/master/Lab_Assets/implementing_an_elasticsearch_backed_search_microservice/function_solved.py

7. Copy and paste the code in the Lambda function code editor. The code is provided in the above Github link.

https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---Speciality/blob/master/Lab_Assets/implementing_an_elasticsearch_backed_search_microservice/function_solved.py

8. Copy the ES endpoint and paste it over the <ES ENDPOINT> placeholder in line 7 of the code.

9. This code snippet is used to import the necessary python libraries.

10. This code snippet initializes the client.

11. This query in the code brings the data into the API.

12. This code snippet sends the request to the Elasticsearch domain and captures the response.

13. This code snippet extracts the data from the Elasticssearch domain.

14. This code snippet separates keys and values from the python dictionary.
returns the response.

15. This code snippet converts the response into a JSON string and is returned through API Gateway.

16. Click on the “Deploy” button to save the changes.

Step 3: Test the Website

1. Go to the website by entering the website URL.

2. Enter the “Horse~20” into the search bar.

3. Click on the “Search” button.

4. The search should return 29 hits. You can also view how
many chapters contained the term Horse and the term's total
score.

5. Enter “Food~20” into the search bar.

6. Click on the “Search” button.

7. Compare the results to your previous results. Based on the
total score, horses are described more often than food.

8. Hence, this is how you can add the functionality of statistical
analysis of words and phrases to any website.

Mind Map

Figure 10-08: Mind Map

Practice Questions

1. Which service is a search domain that runs most of the ELK stack?

A. Amazon ElasticSearch service

B. EC2

C. Athena

D. None of the above

2. Which of the following is a Top-level organizational unit?

A. Type

B. Index

C. Document

D. None of the above

3. Which of the following is the second level used to categorize data?

A. Index

B. Document

C. Type

D. None of them

4. Which of the following is Elasticsearch data object?

A. Index

B. Document

C. Type

D. None of the above

5. Anything that can interact with the API can send data into
______________.

A. Amazon Elasticsearch

B. EC2

C. Athena

D. None of the above

6. Which of the following Logs subscription can deliver to
Elasticsearch Service?

A. EC2

B. Amazon Elasticsearch

C. CloudWatch

D. None of the above

7. Which of the following rules can send data to Elasticsearch Service?

A. IoT

B. Kinesis Data Firehose

C. CloudWatch

D. None of the above

8. Which of the following uses JSON for everything?

A. EC2

B. Elasticsearch

C. CloudWatch

D. None of the above

9. The Interface includes _________________.

A. REST interface

B. GET

C. PUSH

D. DELETE

E. POST

F. All of them

10. Which of the following has built-in ES integration?

A. Kinesis Data Firehose

B. IoT

C. CloudWatch

D. None of the above

Chapter 11: AWS Security Services

Introduction

In this chapter, we are going to discuss AWS security services. Security
services do not fit in any of the steps in the data analytics steps for
success, but we need to secure our data. Data is the lifeblood that
makes our application work. It is the most valuable thing in any
application. It is what allows us to generate revenue from our
application. Without data, our application does nothing.

Figure 11-01: Introduction to AWS Security Services

Overview

The AWS security services are Identity and Access Management or
IAM, VPC security features, the Key Management Service, and Secrets
Manager. All of these have some integration or functionality that allows
us to secure the other services.

Figure 11-02: AWS Security Services

1. Identity Access Management

Identity and Access Management, or IAM, allows us to control access to
other AWS services. Any API call that you make is going to pass
through Identity and Access Management. Several of the services you
use may not use IAM for their primary authentication on their primary
interface. You can use IAM users or groups to control access to RDS
instances, Redshift clusters, or Elasticsearch service domains, and it
also provides an external identity federation. Hence, if you have an
active directory in an on-premises system, you can integrate that with
IAM and allow Active Directory users to access AWS services with their
Active Directory credentials.

2. VPC-Security

VPC security features are about network layer security hence security
groups and network ACLs will allow us to control network traffic flow
to and from our resources within our VPC.

3. Key Management Service

Key Management Service is another very important service. It allows
you to store your encryption keys as well as generate encryption keys in
conjunction with IAM and CloudTrail. You can log and audit that key
usage.

4. Secrets Manager

Secrets Manager is a great service that acts as a vault for our passwords
and API keys. You can use it to rotate those security objects in several
of our services. You can manage who has access to those security
objects through IAM. Hence, you can say this IAM group can use this
set of API keys or passwords so on and so forth.

Identity Access Management

Introduction

AWS Identity and Access Management (IAM) is a web service that
provides secured control access to AWS resources such as compute,
storage, database, and application services in the AWS Cloud. IAM
manages authentication and authorization by controlling who is signed
in and has permission to utilize the resources. IAM uses access control
concepts such as Users, Groups, Roles, and Policies to control which
users can access specific services, the kinds of actions they can perform,
and which resources are available. The IAM service is provided at no
additional cost. However, your account will be charged upon the usage
of other AWS services by your users.

When you establish an AWS account for the first time, you start with a
single sign-in identity that has full access to all AWS services and

resources in the account. This identity is called the AWS account root
user and is accessed by signing in with the email address and password
you used to create the account. Since these credentials provide full
access to the AWS account, it is strongly advised to use the Root User
exclusively to create other users for persons within your business.
Ensure the Root User account credentials are kept safe and used only
for a few accounts and service management tasks.

EXAM TIP: Understand what the Root User is and know its
privileges. As it always has full administrator access, you should
never provide these account credentials to anybody. Instead, create a
user for each employee in your business and always safeguard this
root account with multi-factor authentication.

IAM Concept

With IAM, you have Amazon Web Services that is at its core one big
API. Hence, when you send a request to that API, it is then passed
through IAM to check the permissions. If you present credentials that
permit us, our request is sent to whatever service you are making an
API call for. If you do not have permission, then you get a response that
tells us no.

Figure 11-03: IAM Overview

IAM Permission Objects

Policies govern AWS access by establishing and applying them to IAM
identities (users, groups of users, or roles) or AWS resources. A policy
in AWS is an object that specifies the rights of identity or resource
when it is associated with it. AWS checks these policies when an IAM
principal (user or role) submits a request. The permissions granted by
the policies determine whether the request is authorized or refused.
The bulk of AWS rules is stored as JSON documents. AWS supports all
policy types, including identity-based policies, resource-based policies,
permission boundaries, organizations SCPs, ACLs, and session rules.

When you get into that permissions area, things get a little more
complicated. Hence, you will start with a policy in the IAM permission
objects, which dictates what permissions you have. It dictates which
pieces of the API you have access to. You can attach those policies
directly to a user. It is the individual user. Therefore, when you log into
the AWS console, you are logging in as an IAM user in most cases. That
IAM user holds the information associated with the credentials you

provide for it. You can set those users to have just console access, or
they can have programmatic access through access and secret keys
generated from IAM. Those users can be placed in groups, and then you
can use that to connect our policies to more than one user at a time.
You can manage that policy attachment easier because you cannot
attach any policies to our users and just place them in groups. That
way, you can create policies that apply to groups of users instead of
individual users. You also have roles. Roles are similar to users, but
users or services can assume them.

Assume you have a Lambda function that needs to make calls to
DynamoDB. That Lambda function needs to present the AWS API
credentials that give it access to DynamoDB. Hence, it is going to
assume a role. The same can apply to users. It is often used for cross-
account permissions.

IAM Features

The IAM service is part of AWS's secure worldwide infrastructure. With
IAM, you can create and manage users and groups, security credentials
such as passwords, access keys, and permission policies to allow and
deny access to the AWS resources.

1. IAM Users

An IAM user is a unique identity with limited access to an AWS account
and its resources, defined by their IAM permissions and policies. Users
of IAM can represent a person, a system, or an application. IAM policies
assigned to users must grant explicit permissions to services or
resources before viewing or using them. IAM lets you create individual
users within your AWS account and give them their username,

password, and access keys. Individual users can then log into the
console using a URL that is specific to their account. You can also
create access keys for individual users to make programmatic calls to
access AWS resources. You can provide user access to any or all of the
AWS services linked with IAM, or you can utilize IAM in combination
with external identity sources, such as Microsoft Active Directory, AWS
Directory Service, or log in with Amazon.

Suppose the users in your organization already have a way to be
authenticated, such as by signing in to your corporate network. In that
case, you do not have to create separate IAM users for them. Instead,
you can federate those user credentials into AWS. It is suggested that
you create an IAM user even for yourself and not use your AWS account
credentials for day-to-day AWS access.

2. IAM Groups

A group is a group of IAM users. You may utilize groups to establish
permissions for a group of users, making it easier to manage their
access. For example, you may create a group named Admins and assign
administrators generally require the rights. Any user in that group has
the default permissions granted to the group. Assume a new user joins
your organization and requires administrator capabilities. In that
instance, you may provide the necessary rights by adding the user to
the relevant group. Similarly, suppose a user changes jobs within your
firm rather than modifying that user's permissions; you may delete
them from the old groups and add them to the new ones in such a case.

Some key aspects of Groups:

A user's membership in a group can be added or revoked

A user can be a member of many groups

A group cannot be a member of another group

Access control policies can be used to provide permissions to
groups. It is easier to manage permissions for a group of users
than to manage permissions for each user

Groups do not have security credentials and cannot directly
access online services; they exist primarily to make managing
user permissions easier

EXAM TIP: A group is a collection of IAM users. The users will
inherit all of the group's permissions.

3. IAM Roles

An IAM role is an IAM object that allows you to define a set of
permissions for a user or service to access resources. However, the
permissions are not connected to a specific IAM user or group. Instead,
IAM users, mobile and EC2-based applications, and AWS services (such
as Amazon EC2) can programmatically acquire a role. The role results
in temporary security credentials that the user or application may use
to make AWS programmatic requests. These temporary security
credentials have a configurable expiration date and are automatically
cycled.

You do not have to keep long-term credentials and IAM users for every
entity that wants access to a resource when using IAM roles and
ephemeral security credentials. A single instance cannot have several
IAM roles assigned to it. You may, however, assign a single IAM role to
numerous instances. As a result, roles are far more secure and easier to
manage than access key ids and secret access keys.

Roles, like everything else in identity access management, are universal.
Unlike users, you do not need to identify what region they are in.

EXAM TIP: IAM resources are global. The IAM Roles can be used
across regions.

4. IAM Policies

An IAM policy is a rule or group of rules defining actions that may not
be done on an AWS resource. Policies are used to give permissions.
When a policy is associated with an identity or resource, it defines the
permissions for that identity or resource. When a user makes a request,
AWS examines these rules. The policies' permissions decide whether
the request is approved or rejected. AWS rules are maintained as JSON
documents and can be either identity-based or resource-based.

Policies can be granted in several ways:
Include a controlled policy. AWS offers several pre-defined
rules, such as AmazonS3 Read-Only Access
Include an inline policy; an inline policy is a handwritten policy
Add the user to a group with suitable permission policies
Clone an existing IAM user's permissions

IAM users, groups, and roles have no permissions by default. Use the
AWS Management Console, the IAM API, or the AWS CLI to configure
permissions to create and attach policies. Policies may be created and
assigned to IAM users, groups, and roles by users who have the relevant
rights.

We have customers (customer-managed policies) or AWS (AWS

managed policies) handle managed policies (AWS-managed policies).
Managed policies are IAM resources that use the IAM policy language
to describe permissions. You may create, amend, and administer them
independently of the IAM users, groups, and roles to which they are
linked. You may change that policy in a single location after attaching a
managed policy to multiple IAM users, groups, or roles. The rights are
automatically extended to all associated entities.

IAM groups may be used to organize IAM users and set common
permissions for them. Managed policies may be used to distribute
permissions among IAM users, groups, and roles. Suppose you want a
group of users to launch an Amazon EC2 instance and the role on that
instance to have the same rights as the group of users. In that case, you
may build a managed policy and assign it to the group of users and the
role on the Amazon EC2 instance.

EXAM TIP: To assign permissions to a group, you must first apply a
policy to that group. JavaScript Object Notation is used to write
policies (JSON).

IAM Secured Services

There are a few examples of services that are secured with IAM. Simple
Storage Service (S3) is often controlled with IAM. It also has its security
features. S3 predates the AWS API. It was the second service launched
as part of Amazon web services. Before the main larger API was created,
bucket, object policies, and the ACLs are artifacts. DynamoDB access is
controlled entirely with IAM. Database Migration Service, Athena,
Glue, Lake Formation, Kinesis Elasticsearch, and QuickSight are also

controlled with IAM. Various code services are secured with IAM. There
are more than the mentioned services that are secured with IAM.
Anything that is primarily accessed through an API interface will flow
through IAM for the most part.

Figure 11-04: IAM Secured Service

External Identity Federation

In External Identity Federation, you can give access to our services to an
outside identity provider. Hence, users in an Active Directory domain
can federate IAM with SAML 2.0 or open ID connect. It lets us use any
provider to create trust relationships with these protocols to access our
IAM authentication framework. You also have the AWS single sign-on
service, which works similarly to IAM. However, it stands up as an
identity provider, which can be federated with external identity
providers. Hence, this can be used as the primary source of our identity
information that you will use to authenticate all of our various systems.
You can federate with AWS single sign-on on-premise, AWS account,
or other cloud providers with federation capabilities. It supports the

Octa Azure Active Directory in SAML 2.0 Federation protocols. You can
use it as a single control plane to manage multiple AWS accounts and
anything else that we can federate with an identity provider that uses
one of the protocols it supports.

Suppose you currently handle user IDs outside of AWS. In that case,
you may utilize IAM identity providers instead of creating IAM users in
your AWS account. You may maintain your user identities outside of
AWS using an identity provider (IdP) and grant these external user
identities authorization to utilize AWS services in your account. It is
handy if your business already has its identification system, such as a
corporate user directory. It is also beneficial to develop a mobile app or
a web application that utilizes AWS services.

When utilizing an IAM identity provider, you do not have to establish
bespoke sign-in codes or manage your user IDs. The IdP handles that.
External users sign in using a well-known IdP, such as Amazon,
Facebook, or Google. You can grant such external identities access to
your account's AWS resources. As you do not have to share or
incorporate long-term security credentials, like access keys, IAM
identity providers help keep your AWS account safe in your application.

Before you can utilize it, you must first build an IAM identity provider
entity to establish trust between your AWS account and the IdP. IAM
supports OpenID Connect (OIDC) and SAML 2.0 compatible IdPs
(Security Assertion Markup Language 2.0).

Key Management System
Introduction

AWS Key Management Service (KMS) is a managed service that allows
you to produce and govern the keys used in cryptographic activities.
The service offers a highly available key generation, storage,
administration, and auditing solution that allows you to encrypt or
digitally sign data within your applications or govern data encryption
across AWS services.

Suppose you are in charge of safeguarding your data across AWS
services. In that case, you should utilize it to centrally manage the
encryption keys that govern data access. Presume you are a developer
who needs to encrypt data in your applications. In that case, you should
use the AWS Encryption SDK in conjunction with AWS KMS to
produce, utilize, and protect symmetric encryption keys in your code.
Imagine you are a developer who wants to digitally sign or verify data
using asymmetric keys. In that case, you should utilize the service to
generate and maintain the necessary private keys. Assume you want
scalable key management infrastructure to support your developers and
their growing number of applications. In that case, you should utilize it
to lower your licensing costs and operational strain. Suppose you are in
charge of establishing data security for regulatory or compliance
purposes. In that case, you should utilize it since it makes it easier to
demonstrate that your data is constantly safeguarded. It is also subject
to a wide range of industry and regional compliance requirements.

EXAM TIP: Suppose the database or service is located on a server
farm where password changes take time to propagate to all member
servers. In that case, the database may refuse calls that employ
rotated credentials. You may reduce this risk by using an effective
retry mechanism.

KMS Concept

Let us assume you have super valuable data and want to turn it into
encrypted data. It allows us to store and manage our encryption keys,
and it can also be utilized to encrypt data. If our keys expire or become
invalid, for some reason, you can use it to rotate those encryption keys.
Doing this manually can be labor-intensive, which is part of why KMS
exists. It is a service to facilitate these activities. KMS uses a customer
master key. It can be generated within the KMS service itself, or you can
supply a master key that you want to use. If you want to ensure you are
in full control of our encryption material. It is the key that makes
everything work.

Figure 11-05: Key Concept

AWS KMS Keys

The fundamental resource in AWS KMS is AWS KMS keys (KMS keys).
A KMS key can be used to encrypt, decrypt, and re-encrypt data. It can
also create data keys for usage outside of AWS KMS. Typically,
symmetric KMS keys are used, although asymmetric KMS keys can be
created and used for encryption or signing.

A logical representation of an encryption key is an AWS KMS key. A

KMS key comprises metadata such as the key ID, creation date,
description, and key status in addition to the key material required to
encrypt and decode data.

The basic KMS key, also known as asymmetric KMS key, is a
cryptographic key used for encryption and decryption. You may also
generate an asymmetric KMS key (RSA or elliptic curve (ECC)) for
encryption and decryption, as well as signing and verifying (but not
both).

AWS KMS is used to generate KMS keys. Symmetric KMS keys and
asymmetric KMS keys' private keys are never left unencrypted in AWS
KMS. You must use AWS KMS to utilize or manage your KMS keys.

AWS KMS generates the key material for a KMS key by default. This
critical material cannot be extracted, exported, viewed, or managed.
Furthermore, you cannot remove this key material; instead, you must
delete the KMS key. However, in the AWS CloudHSM cluster linked
with an AWS KMS custom key store, you can import your key material
into a KMS key or generate the key material for a KMS key.

AWS KMS now supports multi-region keys, which allow you to encrypt
data in one AWS Region and decode it in another.

EXAM TIP: A logical representation of an encryption key is an AWS
KMS key. A KMS key comprises metadata such as the key ID,
creation date, description, and key status in addition to the key
material required to encrypt and decode data.

Customer Managed Keys

The customer handles the KMS keys you generate. Customer-managed

keys are KMS keys that you generate, own, and administer in your AWS
account. You have entire authority over these KMS keys, including the
ability to create and manage key policies, IAM policies, and grants, as
well as activate and disable them. They rotate their cryptographic
material, add tags, make aliases for the KMS keys, and schedule the
destruction of the KMS keys.

Customer-controlled keys are displayed on the AWS Management
Console's Customer-managed keys page for AWS KMS. Use the
DescribeKey operation to definitively identify a customer-maintained
key. The value of the KeyManager field of the DescribeKey response for
customer-managed keys is CUSTOMER.

You may use your customer-managed key to perform cryptographic
operations and audit use in AWS CloudTrail logs. Furthermore, many
AWS services that integrate with AWS KMS allow you to generate a
customer-managed key to safeguard data stored and maintained on
your behalf.

EXAM TIP:

You may use your customer-managed key to perform cryptographic
operations and audit use in AWS CloudTrail logs.

Symmetric KMS Keys

When you generate an AWS KMS key, you are given a symmetric KMS
key by default.

In AWS KMS, a symmetric KMS key is a 256-bit encryption key that
never leaves the system unencrypted. It would help if you used AWS

KMS to utilize a symmetric KMS key. Symmetric keys are used in
symmetric encryption, which employs the same key for encryption and
decoding. Unless your job requires asymmetric encryption, symmetric
KMS keys are a good option because they never leave AWS KMS
unprotected.

AWS services that are connected with AWS KMS secure your data with
symmetric KMS keys. These services do not support encryption with
asymmetric KMS keys.

SYMMETRIC DEFAULT is the key specification for a symmetric key,
ENCRYPT DECRYPT is the key use, and SYMMETRIC DEFAULT is the
encryption technique.

You may encrypt, decrypt, and re-encrypt data in AWS KMS using a
symmetric KMS key, as well as produce data keys and data key pairs.
You can make multi-region symmetric KMS keys, import your key
material into symmetric KMS keys, and make symmetric KMS keys in
custom key stores.

EXAM TIP:

A symmetric KMS key in AWS KMS is a 256-bit encryption key never
left unprotected in AWS KMS. It would be advantageous if you
utilized AWS KMS to generate a symmetric KMS key.

Asymmetric KMS Keys

AWS KMS allows you to generate asymmetric KMS keys. An
asymmetric KMS key is a mathematically connected pair of public and
private keys. The private key is never left unprotected in AWS KMS. It

would help if you used AWS KMS to utilize the private key. The public
key can be used within AWS KMS by executing the AWS KMS API
activities or downloaded and used outside of AWS KMS. Multi-Region
asymmetric KMS keys can also be generated.

It is possible to produce asymmetric KMS keys that represent RSA key
pairs for public-key encryption, signing and verification, or elliptic
curve key pairs for signing and verification.

Data Keys

Data keys are encryption keys that may be used to encrypt data,
especially enormous volumes of data. Data keys are returned to you for
use outside of AWS KMS instead of KMS keys, which cannot be
downloaded.

When AWS KMS generates data keys, it provides you with a plaintext
data key that you may use immediately away (optional), as well as an
encrypted copy that you can preserve safely with the data. When you
are ready to decrypt the data, ask AWS KMS to decode the encrypted
data key.

AWS KMS is a service that produces, encrypts, and decrypts data keys.
AWS KMS, on the other hand, does not store, manage, or monitor your
data keys, nor does it execute cryptographic operations with data keys.
Data keys must be used and managed outside of AWS KMS.

EXAM TIP:

Data keys are encryption keys that may be used to encrypt data,
particularly large amounts of data. Instead of KMS keys, which
cannot be downloaded, data keys are provided to you for usage
outside of AWS KMS.

Customer Master Key

CMKs are classified into two types: AWS-managed and customer-
managed. When you activate server-side encryption of an AWS
resource for the first time under the AWS-managed CMK for that
service, AWS-controlled CMK is produced (e.g., SSE-KMS). The AWS-
managed CMK is specific to your AWS account and the region in which
it is deployed. AWS-managed CMKs can only safeguard resources
within the AWS service for which they were designed. It does not offer
the granular control that a customer-managed CMK does. To get
further control, employ a customer-managed CMK in all supported
AWS services and your applications. A customer-managed CMK is
generated at your request and should be set according to your specific
use case.

Envelope Encryption

It is protected when you encrypt your data, but you must safeguard the
encryption key. Encrypting plaintext data with a data key and then
encrypting the data key with a separate key is known as envelope
encryption.

You may even encrypt the data encryption key using another
encryption key and then encrypt that encryption key again. However,
one key must finally remain in plaintext so that you may decrypt the
keys and your data. The root key is the top-level plaintext encryption
key.

Figure 11-06: Data Encryption Key under another Encryption Key

AWS KMS protects your encryption keys by securely storing and
managing them. Root keys held in AWS KMS, also known as AWS KMS
keys, are never left unencrypted in the AWS KMS FIPS verified
hardware security modules. To utilize a KMS key, you must first contact
AWS KMS.

Figure 11-07: Root Keys Stored in AWS KMS

EXAM TIP: Encrypting plaintext material with a data key and then
encrypting the data key with a separate key called envelope
encryption.

Envelope encryption has various advantages:

Protecting Data Keys

When you encrypt a data key, you do not have to worry about keeping
the encrypted data key since encryption protects the data key by
default. The encrypted data key can be safely stored alongside the
encrypted data.

Encrypting the Same Data under Multiple Keys

Encryption procedures can be time-intensive, especially if the data
being encrypted is substantial. You can re-encrypt only the data keys
that secure the raw data instead of re-encrypting raw data with multiple
keys numerous times.

Combining the Strengths of Multiple Algorithms

Symmetric key algorithms are quicker than public-key algorithms and
create smaller ciphertexts. However, public-key algorithms allow
intrinsic role separation and easier key management. Envelope
encryption allows you to combine the advantages of each technique.

KMS Encryption Flows

Following are the KMS encryption flows:

1. Service Side Encryption

KMS will have a customer master key, and you can send data to KMS.
Assume you need to encrypt the data; KMS will encrypt the data and
send it back. There is a flaw here, and if you encrypt many individual
files, the network latency between our client and the KMS service will
add up. The network latency from the requests to sending the file back
will add up. It may only be tens of milliseconds, but if you are talking
about thousands of files, that will add up quickly. It works well for
infrequent encryption or situations where you do not necessarily have
to compute available to encrypt our data, but if you do not want this

network latency in the mix, you can use Envelope Encryption.

Figure 11-08: Service Side Encryption

2. Envelope Encryption

The other encryption flow you can use is called envelope encryption.
Most of the services that will use KMS to encrypt data at rest are going
to use Envelope encryption when they do encryption. If our client
needs to encrypt data, KMS will generate a key, which it then encrypts
with our customer master key and stores in the service. Then it
generates a table of what data is encrypted with that token, not the
actual data, and the key identifier for the key generated. The encryption
key that is used to encrypt and decrypt that key from its storage then
sends that generated key back. You can combine that with our super-
valuable data and create our encrypted data. It means that if you are

encrypting a large number of files, you just need to collect one
generated key. You can encrypt all our files, and you are good to go.
You are just making a single trip to the KMS service and back. It saves a
lot of time in the end, especially if you need to encrypt many individual
files or a huge amount of data.

Figure 11-09: Envelope Encryption

Secrets Manager
When you establish a custom application to obtain information from a
database, you would often include the credentials, or secret, for directly
accessing the database in the application. When it came time to rotate
the credentials, you had to do more than just establish new ones. You
needed to spend time updating the application to use the new
credentials. The modified application was then distributed. If you have

numerous applications that share credentials and fail to update one of
them, the application will fail. Due to this risk, many customers opt not
to update credentials regularly, putting one risk in place of another.

Secrets Manager allows you to replace hardcoded credentials, such as
passwords, in your code with an API call to Secrets Manager to get the
secret programmatically. As the secret no longer resides in the code,
this helps ensure that it cannot be compromised by someone reviewing
your code. You may also set Secrets Manager to rotate the secret for you
on a pre-defined period. It allows you to substitute long-term secrets
with short-term ones, lowering the chance of compromise drastically.

EXAM TIP: Suppose the database or service is located on a server
farm where password changes take time to propagate to all member
servers. In that case, the database may refuse calls that employ
rotated credentials. You may reduce this risk by using an effective
retry mechanism.

Secrets Manager Concept

AWS Secrets Manager secures access to your applications, services, and
IT resources without the upfront investment or ongoing maintenance
expenses associated with running your infrastructure.

Secrets Manager is designed for IT administrators who need a safe and
scalable way to store and manage secrets. Security administrators may
use a secrets manager to meet regulatory and compliance standards to
monitor and cycle secrets without interfering with applications. Secrets
Manager may be retrieved programmatically by developers that want to
replace hardcoded secrets in their applications.

It lets us store various text-based security tokens. You can control
access to those tokens via IAM and encrypt those arrests for an extra
layer of security. The best security approach is always a multi-layered
security approach. Hence, if you have very valuable secrets, you will
want to encrypt them at rest as well. Using a secret vault-like
HashiCorp Vault lets us keep all of our authentication material out of
our code. Hence what you did write in our code that you are
committing to a code repository is just the calls to Secrets Manager.
You no longer have any secrets in our code to retrieve those secrets, and
our code becomes more flexible. You do not have to update the code
every time a password changes because the reference to Secrets
Manager will point to that new password if you rotate it through
Secrets Manager.

The figure below depicts the most basic case. The diagram shows how
you can save database credentials in Secrets Manager and subsequently
use those credentials in an application to access the database.

Figure 11-10: AWS Secrets Manager Concept

1. On the Personnel database, the database administrator
generates a set of credentials for usage by an application called
MyCustomApp. The administrator additionally configures those

credentials to grant the application access to the Personnel
database.

2. The database administrator saves the credentials as a secret
named MyCustomAppCreds in Secrets Manager. The credentials
are then encrypted and stored as the protected secret text
within the secret by Secrets Manager.

3. When MyCustomApp connects to the database, it searches
Secrets Manager for the secret MyCustomAppCreds.

4. Secrets Manager collects the secret, decrypts the encrypted
secret text, and provides it to the client app through a secure
(HTTPS with TLS) connection.

5. The client application extracts the credentials, connection
string, and any other necessary information from the response.
It connects to the database server using it.

EXAM TIP: Secrets Manager supports a wide range of secrets. Secrets
Manager can naturally rotate credentials for compatible AWS
databases without further programming. Rotating secrets for other
databases or services necessitates the creation of a new Lambda
function to describe how Secrets Manager interacts with the database
or service. To develop the function, you must have some programming
knowledge.

Secrets Manager Features

At runtime, encoded secret values can be retrieved programmatically.
Secrets Manager improves your security posture by removing hard-
coded credentials from your application source code and preventing
credentials from being stored in any form within the application.
Storing the credentials in or with the application exposes them to

compromise by anybody who has access to your program or its
components. This technique makes rotating your credentials tough.
Before you can depreciate the old credentials, you must update your
application and distribute the updates to each client.

Secrets Manager allows you to acquire stored credentials by replacing
them with a runtime call to the Secrets Manager Web service.

Your client usually requires the most recent version of the encrypted
secret value. You can supply the secret name or Amazon Resource
Name (ARN) without mentioning a version when obtaining the
encrypted secret value. Secrets Manager will automatically return the
most recent version of the secret value if you do this.

Most systems allow more complicated secrets than a simple password,
such as whole sets of credentials that contain the connection
information, the user ID, and the password. Secrets Manager enables
you to keep numerous sets of these credentials in memory at the same
time. Each set is saved in a distinct version of the secret in Secrets
Manager. Other versions, however, may exist concurrently. Secrets
Manager tracks the older credentials and the new credentials you want
to start using during the secret rotation process until the rotation
completes.

EXAM TIP: When AWS Secrets Manager rotates a secret, you may
set up Amazon CloudWatch Events to get a notice. You may also use
the Secrets Manager console or APIs to discover when Secrets
Manager last rotated a secret.

Secret Storage

The AWS secrets manager uses JSON to distort data, approximating
what it might look like is shown in the figure below. It stores a string in
the JSON. Hence those secrets can be passwords. They could be SSH
keys. It could be API keys, really any string that fits within 64 kilobytes
can be stored in Secrets Manager. You could have Base64 encoded
strings that are stored in Secrets Manager that you know. You have to
decode that Base64 encoding.

Figure 11-11: Secret Storage

Different Secrets Types Store in AWS Secrets Manager

Secrets Manager allows you to store text in a secret encrypted secret
data part. It normally comprises the database or service's connection
information. This information may contain the server name, IP address,
port number, and the user name and password used to access the
service.

Secret name and description

Rotation or expiration settings

ARN of the KMS key associated with the secret

Any attached AWS tags

Encrypt Secret Data

Secrets Manager encrypts a secret's protected text using AWS Key
Management Service (AWS KMS). AWS KMS is used for key storage
and encryption by many AWS services. When your secret is at rest,
AWS KMS assures its safe encryption. Every secret is associated with a
KMS key in Secrets Manager. It can be a customer-controlled key
created in AWS KMS or an AWS-managed key for the account's Secrets
Manager (aws/secretsmanager).

Secrets Manager requests AWS KMS to produce a new data key from
the KMS key whenever it encrypts a new version of the protected secret
data. Secrets Manager uses this data key for envelope encryption.
Secrets Manager keeps the encrypted data key in the same folder as the
protected secret data. Secrets Manager requests AWS KMS to decrypt
the data key, which Secrets Manager then uses to decode the protected
secret data whenever the secret requires decryption. Secrets Manager
never saves the data key in an unencrypted state and always disposes of
it soon after usage.

Furthermore, Secrets Manager only accepts requests from servers that
use the open standard Transport Layer Security (TLS) and Perfect
Forward Secrecy. Secrets Manager encrypts your secret as it travels
between AWS and the systems from which you receive it.

EXAM TIP: Secrets Manager uses AWS Key Management Service to
encrypt the protected text of a secret (AWS KMS). Many AWS
services rely on AWS KMS for key storage and encryption.

Secret Rotation

The process of updating a secret regularly is known as rotation. When
you rotate a secret, the credentials in both the secret and the database
or service are updated. You may set up an automatic rotation for your
secrets in Secrets Manager. After rotation, applications that obtain the
secret from Secrets Manager automatically receive the updated
credentials.

Figure 11-12: AWS Secret Manager Rotation

EXAM TIP: AWS Secrets Manager allows you to arrange database
credential rotation. It allows you to adhere to security best practices
and properly rotate your database credentials. Secrets Manager
utilizes the super database credentials you gave to create a clone user
with the same rights but a new password when you start a rotation.
The clone user information is then sent to databases and
applications, which get database credentials.

Automatically Rotate Secrets

Secrets Manager may be configured to automatically rotate your secrets
on a pre-defined schedule and without human interaction.

Rotation is defined and implemented using an AWS Lambda function.
This function specifies how Secrets Manager will carry out the following
tasks:

Creates a new version of the secret

Stores the secret in Secrets Manager

Configures the protected service to use the new version

Verifies the new version

Marks the new version as production-ready

Staging labels assist you in keeping track of the many versions of your
secrets. Each version can have several staging labels associated with it.
However, each stage label can only be associated with one version.
Secrets Manager, for example, marks the presently active and in-use
version of the secret with AWSCURRENT. Configure your applications
to always request the most recent version of the secret. When the
rotation process generates a new version of a secret, Secrets Manager
adds the staging label AWSPENDING to the new version until testing
and validation are completed. Secrets Manager only then assigns the
AWSCURRENT staging label to this new version. When your
applications inquire about the AWSCURRENT version, they instantly
begin utilizing the new secret.

Rotation Strategies

Secrets Manager has two rotation strategies:

1. Single User Rotation Strategy

The single-user technique refreshes one user's credentials in a single
secret. It is the most basic rotation approach, and it is suitable for the
majority of use scenarios. Single-user rotation can be used for:

Using databases when a secret rotates, no database connections
are lost, and new connections made after the rotation utilize the
new credentials

They access services that enable the user to create a single user
account, such as using an email address as the user name. The
service usually enables the user to change their password as
frequently as they like. However, they cannot create new users
or modify their user names

Ad-hoc users are users who are generated as needed

Users who submit their password interactively rather than
having an application get it from Secrets Manager
programmatically. This sort of user does not anticipate having
to update their user name and password

There is a small amount of time between when the password in the
database changes and when the related secret updates when this sort of
rotation occurs. At this moment, there is a low chance that the database
may reject calls that employ rotated credentials. You may reduce this
risk by using an effective retry mechanism.

2. Alternating Users Rotation Strategy

The alternating user’s technique refreshes two users' credentials in a
single secret. You make the first user, then rotate clones to make the
second.

The other user is kept up to speed with each new version of a secret. If
the first version contains user1/password1, the second version has
user2/password2. User1/password3 is used in the third version, while

user2/password4 is used in the fourth. You have two sets of valid
credentials at any one time: the current and prior credentials.

While rotation produces the new version of the credentials,
applications continue to utilize the current version. When the new
version is complete, rotate the staging labels so that applications utilize
the new version.

A separate secret holds credentials for an administrator or superuser
who can create the second user and update the credentials of both
users.

This method is suitable for:

Applications and databases with permission models have access
to the tables. One role owns the tables, and another role is in
the application

Applications that need a high level of availability-This sort of
rotation has a lower risk of denying applications than single-
user rotation

Suppose the database or service is located on a server farm where
password changes take time to propagate to all member servers. In that
case, the database may refuse calls that employ rotated credentials. You
may reduce this risk by using an effective retry mechanism.

To employ this method, you will need a second secret with credentials
for an administrator or superuser with the ability to create a user and
change the password on both users. Guarantee that both users have
identical rights, the first rotation clones this user to create the alternate
user.

VPC Network Security Features

Amazon VPC lets you provision a logically isolated section of the AWS
cloud to launch AWS resources in a virtual network that you define.
You have complete control over your virtual networking environment,
including the ability to define route tables and network gateways, as
well as choose IP address ranges and construct subnets.

A Virtual Private Cloud (VPC) is a cloud computing concept that
provides an on-demand modifiable pool of shared computing resources
assigned inside a public cloud environment while also offering some
level of separation from other public cloud users. As the cloud (pool of
resources) in a VPC model is exclusively available to a single client, it
provides privacy with more control and a safe environment where only
the defined client may work.

The network settings for your Amazon VPC may be readily customized.
For example, you may build a public-facing subnet with Internet
connectivity for your web servers and a private-facing subnet with no
Internet access for your backend systems such as databases or
application servers. To help limit access to Amazon EC2 instances on
each subnet, you may use various levels of security, such as security
groups and network access control lists. You may also utilize AWS to
extend your corporate data center by establishing a hardware Virtual
Private Network (VPN) link between your corporate data center and
your VPC.

EXAM TIP: To isolate cloud resources in a private virtual network,
use Amazon VPC.

VPC Concept

VPC is a network space that lives within a region. You define the top
level of that network space with this CIDR range. Hence, in this case,
10.0.0.0/16, you have availability zones within that region, Availability
zone A and availability zone B. Within those availability zones, you
create subnets. Each of these gets a CIDR range, which is a subset of our
primary VPC CIDR range. Subnet 1 is 1.0/24, and subnet 2 is 2.0/24.
Those subnets within our VPC are all interconnected. If you have an
internet gateway, they have a pathway out to the internet. These are
considered subnet edges, and in the below figure, you are just showing
the subnet interconnect. You then launch our resources within these
subnets, and they are assigned IP addresses within the subnet CIDR
range.

Figure 11-13: VPC Concept

Components of VPC

Virtual Private Cloud: VPC logically isolated virtual network in
the AWS cloud. The IP address space of a VPC is defined by the
ranges you choose

Subnet: A segment of a VPC’s IP address range to place groups
of isolated resources

Internet Gateway: The Amazon VPC side of a connection to
the public Internet

NAT Gateway: A highly available, managed Network Address
Translation (NAT) service for your resources in a private subnet
to access the Internet

Hardware VPN Connection: A hardware-based VPN
connection between your Amazon VPC and your data center,
home network, or co-location facility

Virtual Private Gateway: The Amazon VPC side of a VPN
connection

Customer Gateway: Your side of a VPN connection

Router: Router interconnect subnets and direct traffic between
Internet gateways, virtual private gateways, NAT gateways, and
subnets

Peering Connection: A peering connection enables you to
route traffic via private IP addresses between two peered VPCs

VPC Endpoints: Enables private connectivity to services hosted
in AWS from within your VPC without using an Internet
Gateway, VPN, Network Address Translation (NAT) devices, or
firewall proxies

Egress-only Internet Gateway: A stateful gateway provides
egress-only IPv6 traffic from the VPC to the Internet

Network Access Control List

A network access control list (NACL) is an optional security layer for
your VPC that operates as a firewall to manage traffic in and out of one
or more subnets. Set up network ACLs with rules similar to your
security groups to provide your VPC with an extra layer of protection.

The first layer of network-level security is a Network Access Control

List or network ACL. These are attached at these subnet edges. They are
stateless. They are attached at the subnet level. Hence anywhere there
is a connection outside of the subnet, the Network Access Control List
applies. You can create one network ACL that is attached to many
subnets. Subnets can only have one ACL attached, but you can use that
same ACL for multiple subnets.

Network ACLs use rules. They can be allowed or denied. You specify a
source or destination. Hence, if it is an incoming rule, it will have a
source, and if it is an outgoing rule, it will have a destination. Specify
those with CIDR notation, and then the rule is going to specify a port
range. You can also specify which protocol the rule applies to, and you
can make rules for IPv4 and IPv6 traffic. The rules are checked in order.
Hence they have a number in them, and you will see that in the figure
below. When they are checked, it just goes down the list, and as soon as
there is a match, it stops checking sends the traffic through, which
makes them very efficient, but it can also make them difficult to work
with.

Consider an example of a very basic network ACL. It is an incoming
network ACL, and all you are allowing in is port 80. All other traffic is
going to be denied. Also, note that you are only allowing IPv4 port 80
traffic or the TCP protocol.

Figure 11-14: Network Access Control List

EXAM TIP: An optional security layer that operates as a firewall to

regulate traffic in and out of a subnet. A single network ACL can be
associated with several subnets. However, a subnet can only be
associated with one network ACL at a time.

Network ACL Concepts

The following are the fundamental concepts concerning network ACLs
that you should understand:

Your VPC includes a configurable default network ACL by
default. Thus, it accepts all inbound and outgoing IPv4 traffic
and IPv6 traffic if necessary

A custom network ACL can be created and associated with a
subnet. Unless you set rules, each custom network ACL
prohibits all incoming and outgoing traffic by default

Each subnet in your VPC must have its own network ACL. If a
subnet is not explicitly assigned to a network ACL, it is assigned
to the default network ACL

A network ACL can be associated with many subnets. On the
other hand, a subnet may only be linked with one network ACL
at a time. The prior association is deleted when you pair a
network ACL with a subnet

An ACL on a network is a numbered set of rules. The maximum
number that may be used for a rule is 32766. To determine
whether traffic is authorized into or out of any subnet associated
with the network ACL, we evaluate the rules in ascending order,
beginning with the lowest numbered rule. We recommend that
you begin by defining rules in increments (for example,
increments of 10 or 100) so that you can add more rules as
needed later

An ACL on a network includes separate inbound and outgoing
rules, and each rule can allow or refuse traffic

Since network ACLs are stateless, answers to approve inbound
traffic are subject to the rules for outgoing traffic (and vice
versa)

The number of network ACLs per VPC and the number of rules per
network ACL have limitations (limits).

Network ACL Rules

You may modify the default network ACL by adding or removing rules,
or you can establish new network ACLs for your VPC. When you update
the rules in a network ACL, the changes are automatically applied to
the subnets connected to it.

A network ACL rule is made up of the following components:

Rule Number: Starting with the lowest-numbered, rules are
reviewed in ascending order. When a rule matches traffic, it
takes precedence over any higher-numbered rule that would
contradict it

Type: The kind of transmission, such as SSH. You can also
specify all traffic or a specific range of traffic

Protocol: Any protocol with a standard protocol number can be
specified. See Protocol Numbers for further details. You can use
any or all ICMP types and codes if you select ICMP as the
protocol

Port Range: The traffic's listening port or port range. For
instance, 80 for HTTP traffic

Source: [Only inbound rules] The origin of the traffic (CIDR
range)

Destination: [Only outbound rules] The traffic's final
destination (CIDR range)

Deny/Allow: Whether the given traffic should be allowed or
denied

When you use a command-line tool or the Amazon EC2 API to add a
rule, the CIDR range is automatically changed to canonical form. For
example, if you give 100.68.0.18/18 for the CIDR range, we construct a
rule with a CIDR range of 100.68.0.0/18.

Security Groups

A security group acts as a virtual firewall, for your instance, controlling
inbound and outgoing traffic. When you deploy an instance in a VPC,
you may designate the instance up to five security groups. Security
groups operate at the instance level rather than the subnet level. As a
result, each instance in a VPC subnet can be allocated to a separate set
of security groups.

Suppose you start an instance using the Amazon EC2 API or a
command-line tool without specifying a security group. In that case,
the instance is assigned to the VPC's default security group. When you
start an instance using the Amazon EC2 interface, you may create a new
security group, for example.

Suppose you start an instance using the Amazon EC2 API or a
command-line tool without specifying a security group. In that case,
the instance is assigned to the VPC's default security group. When you
start an instance using the Amazon EC2 interface, you may create a new
security group, for example. Set up network ACLs with rules similar to
your security groups to provide your VPC with an extra layer of
protection.

The next layer of security and security groups are attached at the
resource network interface. Each resource within our VPC will have a
network interface. They will have a security group attached to them.

Maybe the default, it may be one that you have defined yourselves.
They only have allowed rules in them. They are, for the most part,
stateful. They are going to keep track of the connections that are
flowing through them. You can create inbound and outbound rules that
specify the source or destination CIDR range. You can specify TCP,
UDP, or ICMP protocols, and then you specify a port range. You also
have the opportunity to describe each rule. They let us specify whether
this is an IPv4 or an IPv6 rule through the source or destination. There
is an example of a simple security group that is just allowing access to a
Redshift cluster. Whatever Redshift cluster has. This security group
assigned is going to allow access from these 2 IP ranges. Hence you
have described them as Redshift office A and Redshift office B. The best
practice is just to use security groups. They act as a firewall on each
resource that has them assigned, and they are much more flexible and
easier to work with than network ACLs.

Figure 11-15: Security Group

EXAM TIP: VPC's security groups define which traffic is permitted to
or from an Amazon EC2 instance. ACLs in a network function at the
subnet level evaluate traffic entering and departing a subnet. ACLs on
the network may be used to create, allow and deny rules. ACLs on a

network do not filter traffic between instances on the same subnet.
Furthermore, network ACLs use stateless filtering, whereas security
groups use stateful filtering.

Traffic Monitoring

Traffic Mirroring is an Amazon VPC feature that allows you to repeat
network traffic from the elastic network interface of an Amazon EC2
instance. The traffic can then be routed to out-of-band security and
monitoring equipment for:

Content inspection

Threat monitoring

Troubleshooting

Individual instances of the security and monitoring appliances can be
installed, as can a fleet of instances behind a Network Load Balancer
with a UDP listener. Filters and packet truncation are included in
Traffic Mirroring, allowing you to extract only the traffic of interest to
monitor using your preferred monitoring tools.

In traffic monitoring, we have a few options available in VPC flow logs,
which generate a log, as you would guess from the name of the service.
These logs contain whether the traffic was allowed or denied, the
addresses for the source and destination of that traffic, the ports being
used, the protocol being used, and a count of the packets. You can also
get a byte count of the bandwidth passed back and forth in that section.
It is fairly general but can be very useful when troubleshooting
bandwidth issues. Suppose traffic is being denied to a single node in a
cluster. In that case, you can see in these logs that traffic from this

source to this destination is being denied over and over again. You can
check our network ACLs, our security groups, and the configuration of
those resources to find why that traffic is being denied. It is not super
detailed, but you have a second option to get more detailed information
about our network traffic. We can use a service called Traffic Mirroring.
It mirrors the full packets from our connections, and you can specify
those connections. You can send those packets to an elastic network
interface or network load balancer. Whatever is behind that is going to
receive those packets, it can capture and process them. It works
similarly to TCP Dump. It is just configured through the API to target it
at a source, destination, and the session hence the source. You can filter
it like you would TCP Dump to port numbers or protocols or whatever
filtering you want to include.

EXAM TIP: Traffic Mirroring is an Amazon VPC feature that allows
you to repeat network traffic from the elastic network interface of an
Amazon EC2 instance.

Lab 11-01: Advanced S3 Security Configuration
Introduction
Amazon Simple Storage Service

Amazon S3 is a type of object storage that allows you to store and
recover any quantity of data from any location. It is a low-cost storage
solution with business resilience, reliability, efficiency, privacy, and
infinite expansion.

Amazon S3 is a web service that allows you to store and retrieve an

infinite quantity of data from any place and at any time. You may
quickly create projects that integrate cloud-native storage using this
service. As Amazon S3 is easily customizable and you only pay for what
you use, you can start small and scale up as needed without sacrificing
performance or dependability.

Amazon S3 is also built to be highly adaptable. Instead of finding out
how to store their data, Amazon S3 allows developers to focus on
innovation. Build a simple FTP system or a complex web application
like the Amazon.com retail website. Read the same piece of data a
million times or only for emergency disaster recovery; store whatever
type and amount of data you desire.

AWS Identity and Access Management

Individuals and groups can be granted secure access to your AWS
resources by using IAM. It allows you to create and manage IAM users
and provide them access to your resources. Additionally, you have the
option of granting access to users outside of AWS (federated users).

Managed Policy: This contains the permission required to stop
an EC2 instance
Inline Policy: This allows this role to be passed to another
service
Trust Policy: Allows System Manager and EC2 to assume the
role. It enables EC2 to register with the Systems Manager and
Systems Manager to stop the EC2 instance

Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (Amazon EC2) is a cloud computing
service that gives the durability of computing power. It is intended to
make web-scale computing more accessible to IT engineers.

Amazon EC2 offers “compute” in the cloud, such as Amazon Simple
Storage Service (Amazon S3) enables “storage” in the cloud. The easy
web service interface of Amazon EC2 allows you to obtain and
configure capacity quickly. It lets you control your computer resources
entirely and enable you to run on Amazon’s tried-and-true computing
infrastructure. The time to buy and boot new Amazon EC2 server
instances is reduced to minutes, allowing you to scale up quickly and
down capacity as your computing needs change. Amazon EC2
revolutionizes computing economics by enabling you to pay only for
the resources you utilize.

Problem
Assume you are a Database Administrator in an organization. The
organization gives you a task to create a secure cloud storage
management system in a cloud. In the system, the public could not
access team members’ data. Also, each member of the team could not
access each team members’ data, and they only access the team data on
the main team folder. Hence how can you create this type of secure
cloud storage management system?

Solution
The solution is you use the AWS service. You use the AWS S3 to create
the storage management system for storing the data. For blocking
public access to the main team bucket, you should use IAM roles and
bucket policies to block the access.

Note: Before starting the lab, create the AWS S3 bucket and IAM roles
used in this lab.

Figure 11-16: Advanced S3 Security Configuration

Step 1: Investigate the Lab Services

1. Log in to the “AWS Console.”
2. Click on the “Services.”

3. Select the “S3” from the “Storage.”

4. Click on the “Team-data” bucket.

5. Click each of the “Folders” one at a time. Each “Folder”
should contain a “.txt” object.

6. Click on the “Services.”

7. Select the “IAM” from the “Security, Identity, &
Compliance.”

8. Click on the “Users: 4 link.”

9. You should see four users: “Brock, John, Lizzie, and
Cloud_user.”

10. Select any user. Note that these users do not have any
permissions and are not currently assigned to any groups.

11. Go back to the AWS Management Console tab. Click on the
“CloudShell” icon in the top right to open a new browser tab.

12. Close the Welcome to AWS CloudShell pop-up window and let
the environment spin up.

13. SSH into the EC2 instance using the following provided
command: “ssh cloud_user@<PUBLIC_IP_ADDRESS>.”

14. Type “Yes” to continue the connection.

15. You have successfully connected to the EC2 instance.

16. Run the “ls” and “cat” commands to view the contents of the
instance. You should see profiles for john, brock, and lizzie.

17. Type the “cat .aws/credentials” in the prompt you will see
the following output:

18. Try the following provided command “aws s3 ls --profile
john” to view the ListBuckets in the account using john. You
should receive an Access Denied error.

Step 2: Provide Appropriate Public Access

1. Go back to the “S3” dashboard. Click on the “Team-data” bucket.

2. Click on the “Permissions” tab.

3. Scroll down to the Bucket policy section. Then click on the “Edit”

4. Copy the policy provided in the following provided Github link:
https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---
Speciality/blob/master/Lab_Assets/advanced_s3_security_configuration/bucket_policy.json

5. Paste it into the “Policy” editor.

https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---Speciality/blob/master/Lab_Assets/advanced_s3_security_configuration/bucket_policy.json

6. Above the “Policy Editor,” copy the “team-data-<ACCOUNT_NUMBER>”
bucket ARN.

7. Then paste it into the “<TEAM-DATA>” placeholder.

8. Click on the “Save Changes” button.

9. The S3 bucket now displays a “Publicly Accessible” warning.

10. Go back to “CloudShell” and copy the “public.txt” object to the current directory.
to replace <BUCKET_NMAE> with your “Bucket Name.”

11. The following command is used to copy “
s3://<BUCKET_NAME>/public/public.txt . --profile john.”

12. Run the “Cat” command on the “public.txt” object. You should see a “
Response, indicating you have successfully provided public access to the public/ folder.

13. The following command is used to display the output on the prompt “

14. Go back to the S3 dashboard. Click on the “Team-data” bucket.

15. Click on the “Public/ Folder.”

16. Click on the “public.txt” object.

17. Open the “Object URL” in a separate browser.

18. You should see a “Hello, everyone!” Text.

Step 3: Provide Appropriate Team and User Access

1. Create User and Group Policies
2. Go back to the “IAM” dashboard. Then click on the “Policies”

menu.

3. Click on the “Create Policy” button.

4. Click on the “JSON” tab.

5. Copy the user policy provided in the following Github link:
https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---
Speciality/blob/master/Lab_Assets/advanced_s3_security_configuration/user_policy.json
Then paste it into the JSON policy editor.

6. Copy your “S3 Bucket” name and paste it into any “<TEAM-DATA>”
JSON policy editor.

https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---Speciality/blob/master/Lab_Assets/advanced_s3_security_configuration/user_policy.json

7. Click on the “Next: Tags” button.

8. Click on the “Next: Review” button.

9. In the Name field, enter the “team-data-users.”

10. Click on the “Create Policy” button.

11. Click on the “Create Policy” to create another policy.

12. Click on the “JSON” tab.

13. Copy the group policy provided in the Following Github link:
https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---
Speciality/blob/master/Lab_Assets/advanced_s3_security_configuration/group_policy.json
Paste it into the JSON policy editor.

14. Copy your “S3 Bucket” name and paste it into any “<TEAM-DATA>”
JSON policy editor.

https://github.com/linuxacademy/Content-AWS-Certified-Data-Analytics---Speciality/blob/master/Lab_Assets/advanced_s3_security_configuration/group_policy.json

15. Click on the “Next: Tags” button.

16. Click on the “Next: Review” button.

17. In the Name field, enter the “team-data-group.”

18. Click on the “Create Policy” button.

19. Hence successfully create the users’ groups.

Step 4: Apply the User and Group Policies

1. Click on the “Users” from the left-hand side menu to view users

2. Click on the “Users Groups” from the left-hand side menu.

3. Click on the “Create Group” button.

4. In the Group Name field, enter the “team-data.”

5. Scroll down. Select the “Brock, John, and Lizzie” users.

6. Scroll down. In the Policy Type field, search the “team-data.”

7. Select the two created policies, “team-data-group,” and “team-
data-users.”

8. Click on the “Create Group” button.

9. Click on the “team-data” group.

10. Click on the “Users” tab to confirm that users are added.

11. Click on the “Permissions” tab to confirm group policies.

Step 5: Test Permissions

1. Go back to the “CloudShell” browser tab.
2. Type the “Clear” command to clear the terminal.

3. Run a listing to verify that “John” can view the contents of the
“Team/ prefix” in your S3 bucket. Be sure to replace
“<BUCKET_NAME>” with your bucket name. You should now
see the team.txt object by executing the below command in the

terminal.

aws s3 ls <BUCKET_NAME>/team/ --profile john

4. Run the below command for “Brock” and “Lizzie” to verify they
can also view the contents of the “Team/ prefix” in your S3
bucket.

aws s3 ls <BUCKET_NAME>/team --profile brock

aws s3 ls <BUCKET_NAME>/team --profile lizzie

5. Try to download the “team.txt” object without adding profile
credentials. Be sure to replace “<BUCKET_NAME>” with your
bucket name. You should receive an error message by executing
the below command on the terminal.

aws s3 cp s3://<BUCKET_NAME>/team/team.txt .

6. Run the below command, but this time add profile credentials for
“John.” The command should now be successful.

aws s3 cp s3://<BUCKET_NAME>/team/team.txt . --

profile john

7. Run the “cat” command on “team.txt.” You should see a “HI
TEAM!” message by executing the below command on the
terminal.

cat team.txt

8. Verify that access to the “team.txt” object is not public.
9. Go back to the “S3” dashboard. Click on the “team-data” bucket.

10. Click on the “Team/ folder.”

11. Click on the “team.txt” object.

12. Click on the “Object URL” in a separate browser.

13. You should see an “Access Denied” error.

14. Go back to “CloudShell.” Download the “team.txt” object using
profile credentials for “Brock” and “Lizzie.” Be sure to replace
“<BUCKET_NAME>” with your bucket name. The below
commands should be successful for both user profiles.

aws s3 cp s3://<BUCKET_NAME>/team/team.txt . --

profile brock

aws s3 cp s3://<BUCKET_NAME>/team/team.txt . --

profile lizzie

15. Run the “Touch” command to verify that all three users can write
to your S3 bucket prefixes. You should see the three “.txt” objects
you entered in the command and the “public.txt” and

“team.txt” objects.

touch john_write.txt brock_write.txt

lizzie_write.txt

16. Verify files were successfully created by executing the “ls”
command.

17. Verify all three users can write to the “team/ prefix.” Be sure to
replace “<BUCKET_NAME>” with your bucket name in the
below commands.

aws s3 cp john_write.txt s3://<BUCKET_NAME>/team/

--profile john

aws s3 cp brock_write.txt s3://<BUCKET_NAME>/team/

--profile brock

aws s3 cp lizzie_write.txt

s3://<BUCKET_NAME>/team/ --profile lizzie

18. Go back to the “AWS S3” dashboard. Click on the “Team/ folder”
in your S3 bucket. You should now see the “john_write.txt
brock_write.txt, and lizzie_write.txt” objects you uploaded.

19. Go back to “CloudShell.” You should see the john.txt object by
executing the below command on the terminal. Ensure john can
access his user folder. Be sure to replace “<BUCKET_NAME>”
with your bucket name.

aws s3 ls <BUCKET_NAME>/john/ --profile john

20. Test whether the “Brock” and “Lizzie” user profiles can access
the “John” folder. You should see an “Access Denied” error,
indicating that only “John” can access his folder by executing the

below commands on the terminal.

aws s3 ls <BUCKET_NAME>/john/ --profile brock

aws s3 ls <BUCKET_NAME>/john/ --profile lizzie

21. Verify that the “John” user profile can write to the “John/ folder”
by executing the below command on the terminal.

aws s3 cp s3://<BUCKET_NAME>/john/john.txt . --

profile john

22. View “john.txt.” You should see an ASCII image of john by
executing the below command on the terminal.

cat john.txt

23. Ensure all three user profiles can write to their folder. Be sure to
replace “<BUCKET_NAME>” with your bucket name in the
below commands.

aws s3 cp john_write.txt s3://<BUCKET_NAME>/john/

--profile john

aws s3 cp brock_write.txt

s3://<BUCKET_NAME>/brock/ --profile brock

aws s3 cp lizzie_write.txt

s3://<BUCKET_NAME>/lizzie/ --profile lizzie

24. Go back to the “S3” dashboard. Click on the “Team/ folder.”

25. Confirm there are four objects listed “brock_write.txt
john_write.txt, lizie_write.txt, and team.txt.”

26. Click on the “team-data” bucket root.

27. Click on each “User” folder and verify they all “contain
user_write.txt” and “user.txt objects.”

Mind Map

Figure 11-17: Mind Map AWS Security Services

Practice Questions

1. Which AWS resource provides secured control access to AWS
resources such as compute storage and database?

A. AWS VPC

B. AWS KMS

C. AWS IAM

D. AWS Secrets Manager

2. Which is a unique identity with limited access to an AWS
account and its resources as defined by their IAM permissions
and policies?

A. IAM Users

B. IAM Groups

C. IAM Roles

D. IAM Policies

3. Which is a collection of users you can use to specify
permissions to collect users, making it easier to manage
permissions for them?

A. IAM Users

B. IAM Groups

C. IAM Roles

D. IAM Policies

4. Which IAM entity lets you define a set of permissions to
access the resources that a user or service needs?

A. IAM Users

B. IAM Groups

C. IAM Roles

D. IAM Policies

5. Which is a rule or set of rules defining the operations
allowed/denied to be performed on an AWS resource?

A. IAM Users

B. IAM Groups

C. IAM Roles

D. IAM Policies

6. Which AWS service allows you to produce and govern the
keys used in cryptographic activities?

A. AWS VPC

B. AWS KMS

C. AWS IAM

D. AWS Secrets Manager

7. Which key is a 256-bit encryption key that never leaves the
system unencrypted?

A. AWS KMS

B. Symmetric KMS Key

C. Asymmetric KMS Key

D. AWS IAM

8. Which KMS key is a mathematically connected pair of the
public?

A. Symmetric KMS Key

B. Data Keys

C. Customer Master Key

D. Asymmetric KMS Key

9. Which encryption key in AWS is used to encrypt data,

especially enormous volumes of data?

A. Symmetric KMS Key

B. Data Keys

C. Customer Master Key

D. Asymmetric KMS Key

10. Which AWS resource allows you to replace hardcoded
credentials such as passwords in your code with an API call?

A. AWS VPC

B. AWS KMS

C. AWS IAM

D. AWS Secrets Manager

11. The process of updating a secret regularly in AWS Secrets
Manager is known as ___________.

A. Rotation

B. Spinning

C. Swinging

D. Twisting

12. The AWS Secrets Manager stores data in which format?

A. YAML

B. SQL

C. JSON

D. Text

13. Which AWS resource allows you to provision a logically
isolated section of the AWS cloud to launch AWS services in
a virtual private network that defines you?

A. AWS VPC

B. AWS KMS

C. AWS IAM

D. AWS Secrets Manager

14. Which is an optional security layer for your VPC that
operates as firewall traffic to manage traffic in and out or
more subnets?

A. NAT Gateway

B. Network ACL

C. Router

D. Peering Connection

15. Which AWS VPC feature allows you to repeat network traffic
from the elastic network interference of an AWS EC2
instance?

A. Subnets

B. Security Group

C. Traffic Monitoring

D. Router

ANSWERS

Chapter 02: Amazon Simple Storage Service
1. (A) True

Explanation: Amazon S3 is a type of object storage that allows you to
store and recover any quantity of data from any location. It is a low-
cost storage solution with business resilience, reliability, efficiency,
privacy, and infinite expansion. S3 uses an object called the bucket. A
bucket is an atomic unit for S3.

2. (B) 3

Explanation: When we upload data at S3, we have three interfaces to
work with. The AWS management console, the AWS CLI, and several
AWS SDKs.

3. (C) AWS Management console

Explanation: When we use the management console, we use a
graphical user interface.

4. (A) AWS CLI

Explanation: If we are using the AWS CLI, we enter commands in our
terminal that will allow us to move data into our S3 bucket. We can
also use these commands to retrieve data from our S3 buckets.

5. (A) True

Explanation: Transfer Acceleration is enabled per bucket.

6. (B) False

Explanation: There are additional costs for using Transfer
Acceleration. You are charged 4 cents per gigabyte of data transferred

from the United States to Europe and Japan edge locations and 8 cents
per gigabyte for all other AWS edge locations.

7. (A) True

Explanation: Transfer Acceleration leverages the edge locations to
send data back to S3. Hence, this becomes a content ingestion network
and not just a distribution network. This means that our users use
optimized network links to get our data or send data to us.

8. (A) True

Explanation: To get a five tebibyte object into S3, we will use
multipart upload.

9. (C) Three

Explanation: We use three API calls to perform the multipart upload
process.

CreateMultipartUpload, UploadPart and CompleteMultipartUpload
API call.

10. (B) False

Explanation: We can overwrite the parts while the multipart upload is
still in progress. Suppose something in your log file changes, or there is
an update to a section of it. You can overwrite that part that area is in
and have the latest version of the log file in your object when it
uploads, or if one of the parts fails or has some corrupted data in it,
you can write it again multipart upload. It will use whatever the latest
data is for that piece of the upload when it is reassembled.

11. (A) S3 Standard

Explanation: S3 Standard is a storage type for general-purpose storage

of commonly accessed data.

12. (B) S3 Intelligent-Tiering

Explanation: S3 Intelligent-Tiering is utilized for data with uncertain
or changing access patterns.

13. (A) S3 Glacier

Explanation: S3 Glacier offers three retrieval options, ranging from a
few minutes to hours, to keep prices reasonable while meeting various
demands.

14. (A) True

Explanation: S3 Glacier Deep Archive is Amazon S3's cheapest storage
tier. It allows long-term data retention and digital preservation for
material only viewed once or twice a year.

15. (A) S3 Glacier

Explanation: The S3 Glacier is an Archival storage class with minutes
to hours of data retrieval time.

Chapter 03: Databases in AWS
1. (C) Storage Engine

Explanation: A database engine (sometimes known as a storage
engine) is the software component that enables a database
management system (DBMS) to generate, read, update, and delete
(CRUD) data from a database. Most database management systems
have an application programming interface (API) that allows users to
communicate with the underlying engine without going via the
DBMS's user interface.

2. (A) Relational Database

Explanation: A relational database collects data objects with
specified relationships and can be easily retrieved. In the relational
database paradigm, data structures such as data tables, indexes, and
views are maintained distinct from physical storage structures,
allowing database managers to alter the physical data storage
without affecting the logical data structure.

3. (C) Row Database

Explanation: row-oriented databases arrange data by the record and
keep all data related with a record in memory next to each other.
Row-oriented databases are the conventional method of data
organization, and they still offer some important advantages for
storing data fast. They have been designed to read and write rows
quickly.

4. (D) Columnar Database

Explanation: A columnar database is a database management
system (DBMS) in which data is stored in columns rather than rows.
A columnar database's goal is to reduce the time it takes to return a
query by quickly writing and reading data to and from hard disc
storage. Columnar databases store data so that disc I/O speed is
considerably improved. They are very useful for data warehousing
and analytics.

5. (B) Non-relational Database

Explanation: Non-relational databases (often called ‘NoSQL’ or
‘JSON’ or ‘key: value’ databases) differ from standard relational
databases because they are stored in a non-tabular format. Non-
relational databases are far more versatile than relational databases
because they can digest and arrange many kinds of information
concurrently. Non-relational databases, on the other hand, may be
built on data formats such as documents. A document can be quite
thorough while also including various data types in multiple forms.

6. (B) Amazon Neptune

Explanation: Amazon Neptune is a fast, trustworthy, and fully-
managed graph database service that simplifies the design and
operation of applications that deal with vast, linked datasets.
Neptune is designed around a purpose-made, high-performance
graph database engine. Neptune drives graph application cases,
including recommendation engines, fraud detection, knowledge
graphs, medicine discovery, and network security.

7. (C) Amazon DocumentDB

Explanation: DocumentDB is a document store engine. Document

store engines typically are going to format their data as JSON.
Amazon DocumentDB (with MongoDB compatibility) is a highly
scalable, dependable, and completely managed database service.
Amazon DocumentDB simplifies the setup, operation, and scaling of
MongoDB-compatible databases in the cloud.

8. (A) Graph Structure

Explanation: A graph is a nonlinear data structure of nodes and
edges. A graph is a data structure consisting of a finite number of
nodes (or vertices) and edges that link them. The nodes are also
known as vertices, while edges are lines or arcs that connect any two
nodes in the graph. An edge (x,y) signals that the x vertex relates to
the y.

9. (D) OLTP

Explanation: These engines are excellent for OLTP or online
transaction processing. They are used for rapid transactions where
you deal with relatively small pieces of data that will protect the data
through transaction rollback, which the columnar engines do

10. (B) OLIVE

Explanation: Columnar engines are good for OLAB or online
analytics processing, and when you are talking about data analytics
and AWS, they will be fairly important, particularly RedShift. The
RedShift database is excellent at handling large amounts of data.

11. (A) S3 Select

Explanation: Using simple SQL expressions, S3 Select allows apps to
get only a subset of data from an object. You may drastically improve
speed by retrieving only the data required by your application using

S3 Select. In many circumstances, you might expect to see a 400%
improvement.

12. (B) Athena

Explanation: Amazon Athena is an interactive query service that
allows you to use conventional SQL to evaluate data directly in
Amazon Simple Storage Service (Amazon S3). With a few clicks in
the AWS Management Console, you can aim Athena at your Amazon
S3 data and start running ad-hoc searches with conventional SQL to
obtain results in seconds.

13. (C) DynamoDB

Explanation: Amazon DynamoDB is a fully managed NoSQL
database service that delivers quick and predictable performance
while seamless scaling. You can offload the administrative
requirements of running and growing a distributed database using
DynamoDB, so you do not have to worry about hardware
provisioning, setup, configuration, replication, software patching, or
cluster scalability. DynamoDB also supports encryption at rest,
removing the operational load and complexity associated with
securing sensitive data.

14. (A) Aurora

Explanation: Amazon Aurora (Aurora) is a relational database
engine that is fully managed and compatible with MySQL and
PostgreSQL. You already know that MySQL and PostgreSQL
combine the performance and durability of high-end commercial
databases with the simplicity and low cost of open-source databases.
The code, tools, and applications you are now using with your

existing MySQL and PostgreSQL databases may be used with Aurora.

15. (D) Aurora-Serverless

Explanation: Amazon Aurora Serverless v1 (Amazon Aurora
Serverless version 1) is a configuration for on-demand autoscaling in
Amazon Aurora. Aurora Serverless v1 is a simple, low-cost choice for
occasional, intermittent, or unexpected workloads. An Aurora
Serverless DB cluster is a database cluster that dynamically scales
processing capacity based on the needs of your application. In
contrast, Aurora supplied DB clusters require manual capacity
management.

Chapter 04: Collecting Streaming Data
1. (A) Kinesis Data Stream

Explanation: You may gather and handle vast
streams of data records in real-time using Amazon
Kinesis Data Streams. Data-processing applications

can be created, often known as Kinesis Data
Streams applications. A typical Kinesis Data
Streams application reads data records from a data
stream. These applications may operate on Amazon
EC2 instances and use the Kinesis Client Library.
You may utilize the processed records to create
dashboards, issue alerts, modify pricing and
advertising tactics dynamically, and transfer data
to several other AWS services.

2. (B) Kinesis Data Firehose

Explanation: Amazon Kinesis Data Firehose is a fully managed service
that delivers real-time streaming data to destinations, such as Amazon
S3, Amazon Redshift, Amazon OpenSearch Service (Amazon ES),
Splunk, and any custom HTTP endpoint or HTTP endpoints owned by
supported third-party service providers like Datadog, Dynatrace,
LogicMonitor, MongoDB, New Relic, and Sumo Log.

3. (C) Kinesis Data Video streams

Explanation: Amazon Kinesis Video Streams is a
fully managed AWS service. It allows you to

stream live video from devices to the AWS Cloud
and develop applications for real-time video
processing and batch-oriented video analytics.
Kinesis Video Streams offers more than simply video data storage. You
may use it to see your video feeds as they arrive in the cloud in real-
time. You may either watch your live streams via the AWS
Management Console or create your monitoring application that
displays live video using the Kinesis Video Streams API library.

4. (D) Kinesis Data Analytics

Explanation: You may use standard SQL to handle and analyze
streaming data using Amazon Kinesis Data Analytics for SQL
Applications. The service lets you quickly develop and run
sophisticated SQL code against streaming sources to do time-series
analytics, feed real-time dashboards, and generate real-time metrics.

5. (C) Shard

Explanation: A shard is a series of data records in a uniquely
identifiable stream. A stream comprises one or more shards, each of
which has a set capacity unit. Each shard can handle up to five read
transactions per second, for a total data read at the pace of two
megabytes per second. Up to 1,000 write transactions per second, for a
total data write rate of one megabyte per second (including partition
keys). The number of shards you choose for your stream determines
the data capacity of the stream. The overall capacity of the stream is
equal to the sum of its shards’ capacities.

6. (A) Kinesis Client Library

Explanation: KCL assists you in consuming and processing data from
a Kinesis data stream by handling numerous difficult distributed
computing jobs. Examples are load balancing across multiple consumer
application instances, response to consumer application instance
failures, checkpointing processed records, and response to re-sharding.

7. (B) Data Collection

Explanation: The practice of gathering, measuring, and evaluating
correct research insights using established procedures is called data
collection. Based on the evidence gathered, a researcher can assess his
hypothesis. Regardless of the subject of study, data gathering is the first
and most significant stage in most situations. Depending on the
information requested, the approach to data gathering differs for
different topics of research.

8. (C) Mobile Devices & Website

Explanation: Surveys, interviews, and focus groups are the most
common methods for gathering information. Corporations may now
collect data from mobile devices, website traffic, server activity, and
other relevant sources using Web and analytics technologies
depending on the project.

9. (B) Big Data

Explanation: Big data describes voluminous amounts of structured,
semi-structured, and unstructured data collected by organizations that
collect and then mine large amounts of data for information. New
approaches for collecting and analyzing data have emerged because it
takes a lot of time and money to load big data into a traditional
relational database for analysis. In a data lake, raw data with extra

information is aggregated. Machine learning and artificial intelligence
systems then employ complicated algorithms to search for repeating
patterns.

10. (D) Apache Kafka

Explanation: Apache Kafka was originally developed by LinkedIn and
was made open source in 2011. The Apache community then took it
over and a distributed streaming platform with three key capabilities.
These capabilities are the ability to publish and subscribe to streams of
records similar to a message queue, streams of records can be
effectively stored in the sequence in which they were created, and real-
time processing of record streams.

Apache Kafka is a real-time data input and processing distributed data
storage system. Streaming data is constantly created by hundreds of
data sources, which often transmit data records simultaneously. A
streaming platform must manage this continual input of data while still
processing it sequentially and progressively.

11. (D) Data Streaming

Explanation: Streaming data is continually
created by hundreds of data sources, which
generally send in data records in tiny batches
(order of Kilobytes). Streaming data includes log
files created by consumers using mobile or online
applications, e-commerce purchases, in-game player
activity, social network information, financial
trading floors, geospatial services, and telemetry
from connected devices or instrumentation in data

centers.
12. (C) Amazon Kinesis

Explanation: Amazon Kinesis simplifies the collection, processing,
and analysis of real-time streaming data, allowing you to get rapid
insights and respond quickly to new data. Amazon Kinesis provides
essential features for cost-effectively processing streaming data at any
scale, with the freedom to select the tools that best meet your
application’s needs. Amazon Kinesis may be used to store real-time
data such as video, audio, application logs, website clickstreams, and
IoT telemetry for machine learning, analytics, and other applications.
Instead of needing to wait until all of your data is collected before
processing can begin, Amazon Kinesis allows you to process and
analyze data as it arrives and respond quickly.

13. (B) The Kinesis Producer Library must be installed as a Java
application to use with Kinesis Data Streams.

Explanation: The KPL must be installed as a Java application before
using your Kinesis Data Streams. There are techniques to process KPL
serialized data in AWS Lambda and Java, Node.js, and Python, but
none of these solutions mention Lambda.

14. (A) 1 Shard

Explanation: In this scenario, there will be a maximum of 10 records
per second with a max payload size of 1000 KB (10 records x 100 KB =
1000KB) written to the shard. A single shard can ingest up to 1 MB of
data per second, enough to ingest the 1000 KB from the streaming
gameplay. Therefore 1 shard is enough to handle the streaming data.

15. (D) DeliveryStreamName and Record (containing the data)

Explanation: Kinesis Data Firehose is used as a delivery stream. We do
not have to be concerned about shards or partition keys. The Firehose
DeliveryStreamName and the Record object are all that is required
(which contains the data).

Chapter 05: Data Collection and Getting Data
into AWS
1. A (Online Data Transfer)

Explanation: Online Data Transfer makes it
simple and easy to transfer your data into and out
of AWS via online methods.
2. B (Snowcone)

Explanation: Use Snowcone to collect, process, and move data to AWS
online with AWS DataSync.

3. B (Snowcone)

Explanation: Snowcone loads data to Snowcone through Wi-fi wired
10 GbE networking. You can ship the device with data to AWS for
offline data transfer.

4. C (Snowball)

Explanation: Snowball is used for petabyte-scale data transport with
import and export to S3.

5. D (Snowmobile)

Explanation: Snowmobile is an exabyte-scale data transport solution
that uses a secure semi-40-foot shipping container to transfer large
amounts of data into and out of AWS.

6. B (Snowball Edge)

Explanation: Snowball Edge is local storage and large-scale data
transfer. Also, local Lambda and EC2 instances compute, and AWS IoT

Greengrass.

7. D (All of them)

Explanation: The Snow Family includes Snowball, Snowball Edge, and
Snowmobile.

8. A (1 Gbps to 10 Gbps)

Explanation: Direct Connect uses 1 Gbps to 10 Gbps dedicated
networking.

9. B (Database Migration Service)

Explanation: Database Migration Service easily and securely migrates
widely used commercial and open-source databases and data
warehouses into the cloud.

10. B (2)

Explanation: Replication easily replicates your databases and data
warehouse between two locations.

11. C (Cross-Region Replication)

Explanation: Cross-Region Replication allows you to create cross-
region replications of your database for applications running in other
regions.

12. A (Offload Analytics)

Explanation: With Offload Analytics, you can replicate data to the
cloud and run analytics on your cloud databases rather than the
original database users interact with.

13. D (All of them)

Explanation: We can use DMS for Migrations, Upgrade, Achieving

data, and Replications.

14. D (All of them)

Explanation: We can use a Snowball device to:

Store 80 TB storage, 10 GB network.
User interface similar to S3.
All data is encrypted end-to-end.

15. C (Both A and B)

Explanation: Supported Migrations include heterogeneous and
homogenous migrations.

Chapter 06: Amazon Elastic Map Reduce
1. (A) True

Explanation: Map Reduce is a technique that data scientists can use
to distribute workloads across many different computing nodes to
process additional data and get the information back quicker than just
on a single node.

2. (B) Hadoop Distributed File System

Explanation: Hadoop Distributed File System is open-source
software that allows you to operate a distributed file system over
several computers to tackle challenges requiring large amounts of
data.

3. (C) Elastic Map Reduce

Explanation: Elastic Map Reduce is a fully managed AWS service that
allows you to spin up Hadoop ecosystems.

4. (B) Primary Nodes

Explanation: Primary node tracks and directs the HDFS. The primary
node knows how to lookup files and track data on the core nodes.

5. (A) Primary Nodes

Explanation: The primary node is responsible for the YARN resource
management. EMR uses YARN (Yet another Resource Negotiator) to
manage cluster resources for multiple data-processing frameworks.

6. (B) Core Nodes

Explanation: The primary node manages core nodes and runs
Hadoop Map reduce tasks, Hive Scripts, and Spark executors.

7. (C) Task Nodes

Explanation: Task nodes are optional and can add power to perform
parallel computation tasks on data like Map reduce tasks and Spark
executor.

8. (A) Task Nodes

Explanation: Task nodes can be added and removed from the core
nodes to ramp up extra CPU or memory for compute-intensive tasks.

9. (A) True

Explanation: The EMR clusters only reside in a single availability
zone. The main reason behind the single availability zone concept
that the cluster nodes can communicate faster. It means they do not
have to traverse as much internet or the AWS backbone. They are
closer together, and they are in the same availability zone.

10. (A) Local File System (Instance Storage)

Explanation: Local File System (Instance Storage) is used for very
high I/O performance and high IOPS at low cost. It is best used for
temporary data (caches, buffers, and scratch data).

11. (B) Local File System (EBS Volume)

Explanation: Local File System (EBS Volume) is used to add more
storage for HDFS

12. (C) Hadoop Distributed File System (HDFS)

Explanation: Hadoop Distributed File System (HDFS) is best used for
caching the results produced by intermediate job-flow steps.

13. (D) Elastic Map Reduce File System

Explanation: Elastic Map Reduce File System is best used for
persistent store and S3 features that are needed, like server-side
encryption and consistency.

14. (A) Transient Cluster

Explanation: If you set your cluster to terminate automatically, it will
do so after completing all the steps. It is known as Transient Cluster.

15. (B) Long-Running Cluster

Explanation: If you set up the cluster to continue operating after
processing is completed, the cluster is known as Long-Running
Cluster.

Chapter 07: Using Redshift
1. A (Redshift)

Explanation: Amazon Redshift is a fully managed
petabyte-scale cloud data warehouse tool for
storing and analyzing big data sets. Large-scale
database migrations are also performed with it.
2. B (Redshift)

Explanation: Redshift is a data warehousing service. It can warehouse
data at the petabyte scale, which means a huge amount of data can be
stored in Redshift. It can also index and query that data so that data
remains usable. We can store petabytes and exabytes of data in S3.

3. C (cluster)

Explanation: We have either leader nodes or worker nodes within the
cluster.

4. A (Node)

Explanation: Node is the individual compute resources with storage
attached for the Redshift cluster.

5. B (Postgres)

Explanation: In Redshift, Postgres can compress individual columns,
which means different compression types are available depending on
the data type.

6. C (Slice)

Explanation: A Slice divides the compute, memory, and storage of a

node into separate pieces so if recalled from the table in the node
breakdown.

7. A (Leader Node)

Explanation: The leader node manages the schema. It contains the
data warehouse metadata and performs all the query planning and
script generation.

8. B (Worker Nodes)

Explanation: The worker nodes perform query execution, Slice
management, and store all the data within the Slices.

9. A (Cluster)

Explanation: Cluster - Organizational container for resources.

10. B (Node)

Explanation: Node – similar to an instance in RDS.

11. D (Query Process)

Explanation: Query Process – Query plan, Query, Execution Scripts.

12. C (Slice)

Explanation: Slice – Logical subdivision of node resources.

13. A (Cognito)

Explanation Cognito performs user authentication and management.

14. C (Simple notification service)

Explanation: Simple notification service lets us send emails or text
messages to end-users or the application administrator.

15 D (DynamoDB)

Explanation: DynamoDB is used as a transactional database for our
application.

Chapter 08: Redshift Maintenance and
Operations
1. D (All of them)

Explanation: Several interfaces for launching a
Redshift cluster are Web console, AWS CLI, AWS
SDKs.
2. B (Required Parameters)

Explanation: Required Parameters – Minimal parameters are required
at launch.

3. C (Considerations)

Explanation: Considerations – Knowing the workload and use case
helps define our cluster.

4. C (Both A and B)

Explanation: Vacuum can reclaim disk space maintain optimal query
performance.

5. D (All of them)

Explanation: The vacuum process can reclaim disk space, sort Data,
and reindex the table.

6. F (All of them)

Explanation: Vacuum options – Full, sort only, delete only, and
reindex, to threshold percent, boost.

7. D (All of them)

Explanation: Automatic Vacuuming – Delete, sort, analyze.

8. A (Process to sort large amounts of unsorted data quickly)

Explanation: Deep Copy is a process to quickly sort large amounts of
unsorted data.

9. D (All of them

Explanation: Deep Copy Methods – Original table DDL, like table,
temp table truncate.

10. A (Hours to days: only moves user objects)

Explanation: Classic Resize – Hours to days: only moves user objects.

11. B (Minutes: Migrate through the snapshot process)

Explanation: Elastic resize – Minutes: Migrate through the snapshot
process.

12. C (Both A and B)

Explanation: Snapshot’s Restoring – Creates a new cluster; cluster
configuration can be modified.

13. A (copy command can copy data from S3 into the existing table)

Explanation: Loading Data from S3 – copy command can duplicate
data from S3 into the current table.

14. B (unload command can export data from query to S3 in CSV or
Parquet format)

Explanation: Unloading Data To S3 – unload command can export
data from query to S3 in CSV or Parquet format.

15. C (Both A and B)

Explanation: CloudWatch provides a more granular view that can be
used to combine metric graphs.

Chapter 09: AWS Glue, Athena, and QuickSight
1. A (Fully managed ETL service to categorize, clean, and enrich your
data.)

Explanation: AWS is a fully managed ETL service
to categorize, clean, and enrich your data.
2. D (All of them)

Explanation: AWS Glue use cases include Query Data in S3, join data,
and creating a centralized metadata catalog.

3. F (All of them)

Explanation: AWS Glue Components involve Source data stores,
crawlers, catalogs, jobs, output data store, or services using the data
catalog.

4. D (All of them)

Explanation: AWS Glue job performs the Extract, Transform, and
Load (ETL) work in AWS Glue.

5. A (Compressing)

Explanation: The reason that JSON and CSV have an asterisk is that
we have the option of compressing that data before it is stored off.

6. B (1-second)

Explanation: AWS Glue Version 2.0 is billed in 1-second increments
with a 1-minute minimum.

7. A (1-second)

Explanation: AWS Glue Version 0.9 and 0.1 are billed in 1-second
increments with a 10-minute minimum.

8. C (CloudWatch)

Explanation: You can use CloudWatch metrics to determine under or
over-provisioned DPUs in the cluster by monitoring the total number
of actively running executors, the number of completed stages, and the
number of maximum needed executors.

9. C (AWS Glue Jobs)

Explanation: Glue jobs are the business logic that performs ETLs work
in AWS Glue.

10. A (The units used for processing your Glue Jobs)

Explanation: Data Processing Units (DPUs) are used to process your
Glue Jobs.

11. D (All of them)

Explanation: Glue Jobs run on virtual resources, glue jobs needs, and
how traffic is governed.

12. A (S3)

Explanation: If you have data in sources other than S3, you can use
Federated Query (beta) to query the data in place or build pipelines
that extract data from multiple data sources and store them in Amazon
S3

13. C (Both A and B)

Explanation: Athena natively supports querying datasets and data
sources registered with the Glue Data Catalog.

14. A (Serverless querying tool to easily query data in S3)

Explanation: Athena is a serverless querying tool to query data in S3
easily.

15. D (All of them)

Explanation: Athena use cases involve Ad-hoc queries, joining data
from multiple data sources, creating ETL pipelines, and transforming
your data.

Chapter 10: ElasticSearch
1. A (Amazon Elasticsearch service)

Explanation: The Amazon Elasticsearch service is
a search domain that runs most of the ELK
(Elasticsearch Logstash and Kibana) stack.
2. B (Index)

Explanation: Index is a Top-level organizational unit.

3. C (Type)

Explanation: Type is the second level used to categorize data.

4. B (Document)

Explanation: Document is Elasticsearch data object.

5. A (Elasticsearch)

Explanation: Anything that can interact with the API can send data
into Elasticsearch.

6. C (CloudWatch)

Explanation: CloudWatch Logs subscription can deliver to
Elasticsearch Service.

7. A (IoT)

Explanation: IoT rules can send data to Elasticsearch Service.

8. B (Elasticsearch)

Explanation: Elasticsearch uses JSON for everything.

9. F (All of them)

Explanation: The Interface – REST interface, GET, PUSH, DELETE,
POST.

10. B (IoT)

Explanation: IoT Has built-in ES integration.

Chapter 11: AWS Security Services

1. (C) AWS IAM

Explanation: AWS Identity and Access Management (IAM) is a web
service that provides secured control access to AWS resources such
as compute, storage, database, and application services in the AWS
Cloud. IAM manages authentication and authorization by
controlling who is signed in and can utilize the resources. IAM uses
access control concepts such as Users, Groups, Roles, and Policies to
control which users can access specific services, the kind of actions
they can perform, and which resources are available.

2. (A) IAM Users

Explanation: An IAM user is a unique identity with limited access to
an AWS account and its resources, defined by their IAM permissions
and policies. Users of IAM can represent a person, a system, or an
application. IAM policies assigned to users must grant explicit
permissions to services or resources before viewing or using them.
IAM lets you create individual users within your AWS account and
give them their username, password, and access keys.

3. (B) IAM Groups

Explanation: A group is a collection of IAM users. You can use

groups to specify permissions for a collection of users, making it
easier to manage permissions for them. For example, you can have a
group called Admins and give the permissions administrators
typically need. Any user in that group has the permissions provided
to the group by default.

4. (C) IAM Roles

Explanation: An IAM role is an entity that lets you define a set of
permissions to access the resources that a user or service needs, but
the permissions are not attached to a specific IAM user or group.
Instead, IAM users, mobile and EC2-based applications, or AWS
services (such as Amazon EC2) can adopt a role programmatically.

5. (D) IAM Policies

Explanation: An IAM policy is a rule or set of rules defining the
operations allowed/denied to be performed on an AWS resource.
Permissions are granted through policies. When attached to an
identity or resource, a policy defines its permissions. When a user
makes a request, AWS examines these rules.

6. (B) AWS KMS

Explanation: AWS Key Management Service (KMS) is a managed
service that allows you to create and manage cryptographic keys. The
service offers a highly available key generation, storage,
administration, and auditing solution that allows you to encrypt or
digitally sign data within your applications or govern data encryption
across AWS services.

7. (B) Symmetric KMS Keys

Explanation: In AWS KMS, a symmetric KMS key is a 256-bit

encryption key that never leaves the system unencrypted. It would
help if you used AWS KMS to utilize a symmetric KMS key.
Symmetric keys are used in symmetric encryption, which employs
the same key for encryption and decoding. Unless your task
necessitates asymmetric encryption, symmetric KMS keys are a
suitable choice since they never leave AWS KMS vulnerable.

8. (D) Asymmetric KMS Keys

Explanation: AWS KMS allows you to generate asymmetric KMS
keys. An asymmetric KMS key is a mathematically connected pair of
public and private keys. The private key is never left unprotected in
AWS KMS. It would help if you used AWS KMS to utilize the private
key. The public key can be used within AWS KMS by executing the
AWS KMS API activities or downloaded and used outside of AWS
KMS. Multi-Region asymmetric KMS keys can also be generated.

9. (B) Data Keys

Explanation: Data keys are encryption keys that may be used to
encrypt data, especially enormous volumes of data. Data keys are
returned to you for use outside of AWS KMS instead of KMS keys,
which cannot be downloaded.

10. (D) AWS Secrets Manager

Explanation: Secrets Manager allows you to replace hardcoded
credentials, such as passwords, in your code with an API call to
Secrets Manager to get the secret programmatically. Because the
secret no longer resides in the code, this helps ensure that it cannot
be compromised by someone reviewing your code. You may also set
Secrets Manager to rotate the secret for you on a pre-defined period.

It allows you to substitute long-term secrets with short-term ones,
drastically lowering the chance of compromise.

11. (A) Rotation

Explanation: The process of updating a secret regularly is known as
rotation. You may set up an automatic rotation for your secrets in
Secrets Manager. When you rotate a secret, the credentials in both
the secret and the database or service are updated. After rotation,
applications that obtain the secret from Secrets Manager
automatically receive the updated credentials.

12. (C) JSON

Explanation: The AWS secrets manager uses JSON to distort data,
approximating what it might look like in the figure below. It stores a
string in the JSON. Hence those secrets can be passwords. They
could be SSH keys. It could be API keys, really any string that fits
within 64 kilobytes can be stored in Secrets Manager. You could have
Base64 encoded strings that are stored in Secrets Manager that you
know. You have to decode that Base64 encoding.

13. (A) AWS VPC

Explanation: Amazon VPC lets you provision a logically isolated
section of the AWS cloud to launch AWS resources in a virtual
network that you define. You have complete control over your virtual
networking environment, including the ability to define route tables
and network gateways, as well as choose IP address ranges and
construct subnets.

14. (B) Network ACL

Explanation: A network access control list (ACL) is an optional

security layer for your VPC that operates as a firewall to manage
traffic in and out of one or more subnets.

15. (C) Traffic Monitoring

Explanation: Traffic Mirroring is an Amazon VPC feature that
allows you to repeat network traffic from the elastic network
interface of an Amazon EC2 instance. The traffic can then be routed
to out-of-band security and monitoring equipment.

ACRONYMS

AAD Additional Authenticated Data

ACL Access Control List

ACM PCA AWS Certificate Manager Private Certificate
Authority

ACM Private CA AWS Certificate Manager Private Certificate
Authority

ACM AWS Certificate Manager

AMI Amazon Machine Image

ARN Amazon Resource Name

ASN Autonomous System Number

AUC Area Under a Curve

AWS Amazon Web Services

BGP Border Gateway Protocol

CDN Content Delivery Network

CIDR Classless Inter-Domain Routing

CLI Command Line Interface

CMK Customer Master Key

DB Database

DKIM Domain Keys Identified Mail

DNS Domain Name System

EBS Elastic Block Store

EC2 Elastic Cloud Compute

ECR Elastic Container Registry

ECS Elastic Container Service

EFS Elastic File System

EMR Elastic Map Reduce

ES Elasticsearch Service

ETL Extract, Transform, and Load

FBL Feedback Loop

FIM Federated Identity Management

HMAC Hash-based Message Authentication Code

HPC High Performance Compute

HSM Hardware Security Module

IAM Identity and Access Management

IdP Identity Provider

ISP Internet Service Provider

JSON JavaScript Object Notation

KMS Key Management Service

MFA Multi-factor Authentication

MIME Multipurpose Internet Mail Extensions

MITM Man in the Middle Attack

MPLS Multi Protocol Label Switching

MPP Massive Parallel Processing

ML Machine Learning

MTA Mail Transfer Agent

OU Organizational Unit

RDS Relational Database Service

S3 Simple Storage Service

SCP Service Control Policy

SDK Software Development Kit

SES Simple Email Service

SMTP Simple Mail Transfer Protocol

SNS Simple Notification Service

SOAP Simple Object Access Protocol

SQS Simple Queue Service

SSE Server-Side Encryption

SSL Secure Sockets Layer

SSO Single Sign-On

STS Security Token Service

SWF Simple Workflow Service

TLS Transport Layer Security

VERP Variable Envelope Return Path

VPC Virtual Private Cloud

VPG Virtual Private Gateway

WAF Web Application Firewall

WAM WorkSpaces Application Manager

WSDL Web Services Description Language

REFERENCES
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html

https://docs.aws.amazon.com/application-
discovery/latest/userguide/data_collection.html

https://aws.amazon.com/blogs/big-data/harmonize-query-and-
visualize-data-from-various-providers-using-aws-glue-amazon-athena-
and-amazon-quicksight/

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-
structure.html

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-
management.html

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-
secrets.html

https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-
vpc.html

https://docs.aws.amazon.com/vpc/latest/userguide/how-it-works.html

https://www.google.com/aclk?sa=L&ai=DChcSEwjWh53AuKT0AhUX-
FEKHdTbDBQYABAAGgJ3cw&ae=2&sig=AOD64_1aQcZxBGMb-
mQK8PJxDN7Ooh8ssw&q&adurl&ved=2ahUKEwiup5PAuKT0AhWnSPEDHUtpDioQ0Qx6BAgCEAE

https://aws.amazon.com/opensearch-service/the-elk-stack/what-is-
elasticsearch/

https://docs.aws.amazon.com/opensearch-
service/latest/developerguide/what-is.html

https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/data_collection.html
https://aws.amazon.com/blogs/big-data/harmonize-query-and-visualize-data-from-various-providers-using-aws-glue-amazon-athena-and-amazon-quicksight/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/intro-structure.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/how-it-works.html
https://www.google.com/aclk?sa=L&ai=DChcSEwjWh53AuKT0AhUX-FEKHdTbDBQYABAAGgJ3cw&ae=2&sig=AOD64_1aQcZxBGMb-mQK8PJxDN7Ooh8ssw&q&adurl&ved=2ahUKEwiup5PAuKT0AhWnSPEDHUtpDioQ0Qx6BAgCEAE
https://aws.amazon.com/opensearch-service/the-elk-stack/what-is-elasticsearch/
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/what-is.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html

started.html

https://www.knowi.com/blog/what-is-elastic-search/

https://www.elastic.co/guide/en/kibana/6.8/tutorial-visualizing.html

https://www.freecodecamp.org/news/powerful-tools-for-elasticsearch-
data-visualization-analysis/

https://qbox.io/blog/how-to-use-elasticsearch-to-visualize-data/

https://www.redhat.com/en/topics/api/what-does-an-api-gateway-
do#:~:text=An%20API%20gateway%20is%20an,and%20return%20the%20appropriate%20result

https://aws.amazon.com/api-gateway/

https://www.amazonaws.cn/en/cloudfront/

https://en.wikipedia.org/wiki/Amazon_CloudFront

https://aws.amazon.com/blogs/big-data/use-amazon-athena-and-
amazon-quicksight-in-a-cross-account-environment/

https://docs.aws.amazon.com/glue/latest/dg/populate-data-
catalog.html

https://lakeformation.workshop.aws/glue-basics/glue-data-
catalog.html

https://hevodata.com/learn/working-with-aws-glue-data-catalog/

https://docs.aws.amazon.com/glue/latest/dg/author-job.html

https://searchaws.techtarget.com/definition/AWS-Glue

https://docs.aws.amazon.com/glue/latest/dg/monitor-
continuations.html

https://aws.amazon.com/premiumsupport/knowledge-center/glue-
reprocess-data-job-bookmarks-enabled/

https://aprakash.wordpress.com/2020/05/07/implementing-glue-etl-
job-with-job-bookmarks/

https://docs.aws.amazon.com/athena/latest/ug/getting-started.html

https://www.sqlshack.com/getting-started-with-amazon-athena-and-
s3/

https://www.knowi.com/blog/what-is-elastic-search/
https://www.elastic.co/guide/en/kibana/6.8/tutorial-visualizing.html
https://www.freecodecamp.org/news/powerful-tools-for-elasticsearch-data-visualization-analysis/
https://qbox.io/blog/how-to-use-elasticsearch-to-visualize-data/
https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do
https://aws.amazon.com/api-gateway/
https://www.amazonaws.cn/en/cloudfront/
https://en.wikipedia.org/wiki/Amazon_CloudFront
https://aws.amazon.com/blogs/big-data/use-amazon-athena-and-amazon-quicksight-in-a-cross-account-environment/
https://docs.aws.amazon.com/glue/latest/dg/populate-data-catalog.html
https://lakeformation.workshop.aws/glue-basics/glue-data-catalog.html
https://hevodata.com/learn/working-with-aws-glue-data-catalog/
https://docs.aws.amazon.com/glue/latest/dg/author-job.html
https://searchaws.techtarget.com/definition/AWS-Glue
https://docs.aws.amazon.com/glue/latest/dg/monitor-continuations.html
https://aws.amazon.com/premiumsupport/knowledge-center/glue-reprocess-data-job-bookmarks-enabled/
https://aprakash.wordpress.com/2020/05/07/implementing-glue-etl-job-with-job-bookmarks/
https://docs.aws.amazon.com/athena/latest/ug/getting-started.html
https://www.sqlshack.com/getting-started-with-amazon-athena-and-s3/

https://docs.aws.amazon.com/quicksight/latest/user/working-with-
dashboards.html

https://www.bakertilly.com/insights/visualizing-your-data-with-
amazon-quicksight

https://acloudguru.com/blog/engineering/amazon-quicksight-how-to-
put-eyes-on-your-data-with-this-aws-bi-tool

https://www.bakertilly.com/insights/visualizing-your-data-with-
amazon-quicksight

https://github.com/awsdocs/amazon-quicksight-user-
guide/blob/master/doc_source/embedded-dashboards-security.md

https://aws.amazon.com/big-data/datalakes-and-analytics/

https://docs.snowplowanalytics.com/docs/getting-started-on-
snowplow-open-source/setup-snowplow-on-aws/setup-
destinations/setup-redshift/launch-a-redshift-
cluster/#:~:text=Go%20into%20the%20Amazon%20webservices,%2C%20port%2C%20username%20and%20password

https://aws.amazon.com/premiumsupport/knowledge-center/resize-
redshift-cluster/

https://www.flydata.com/blog/how-to-create-an-amazon-redshift-
cluster/

https://www.intermix.io/blog/elastic-node-resizing-in-redshift/

https://docs.aws.amazon.com/redshift/latest/dg/performing-a-deep-
copy.html

https://discourse.snowplowanalytics.com/t/delete-and-vacuum-vs-
deep-copy/812

https://hevodata.com/blog/redshift-vacuum-and-analyze/

https://www.google.com/aclk?
sa=L&ai=DChcSEwixm8bFtPzzAhUW7e0KHQ8uDZUYABAAGgJkZw&ae=2&sig=AOD64_00Kf4RzROvX6TyGOJLsOhOGEKxoA&q&adurl&ved=2ahUKEwj4yL3FtPzzAhWF5OAKHTGkBfAQ0Qx6BAgCEAE

https://docs.aws.amazon.com/aws-backup/latest/devguide/restore-
resource.html

https://docs.aws.amazon.com/redshift/latest/mgmt/metrics.html

https://docs.aws.amazon.com/quicksight/latest/user/working-with-dashboards.html
https://www.bakertilly.com/insights/visualizing-your-data-with-amazon-quicksight
https://acloudguru.com/blog/engineering/amazon-quicksight-how-to-put-eyes-on-your-data-with-this-aws-bi-tool
https://www.bakertilly.com/insights/visualizing-your-data-with-amazon-quicksight
https://github.com/awsdocs/amazon-quicksight-user-guide/blob/master/doc_source/embedded-dashboards-security.md
https://aws.amazon.com/big-data/datalakes-and-analytics/
https://docs.snowplowanalytics.com/docs/getting-started-on-snowplow-open-source/setup-snowplow-on-aws/setup-destinations/setup-redshift/launch-a-redshift-cluster/
https://aws.amazon.com/premiumsupport/knowledge-center/resize-redshift-cluster/
https://www.flydata.com/blog/how-to-create-an-amazon-redshift-cluster/
https://www.intermix.io/blog/elastic-node-resizing-in-redshift/
https://docs.aws.amazon.com/redshift/latest/dg/performing-a-deep-copy.html
https://discourse.snowplowanalytics.com/t/delete-and-vacuum-vs-deep-copy/812
https://hevodata.com/blog/redshift-vacuum-and-analyze/
https://www.google.com/aclk?sa=L&ai=DChcSEwixm8bFtPzzAhUW7e0KHQ8uDZUYABAAGgJkZw&ae=2&sig=AOD64_00Kf4RzROvX6TyGOJLsOhOGEKxoA&q&adurl&ved=2ahUKEwj4yL3FtPzzAhWF5OAKHTGkBfAQ0Qx6BAgCEAE
https://docs.aws.amazon.com/aws-backup/latest/devguide/restore-resource.html
https://docs.aws.amazon.com/redshift/latest/mgmt/metrics.html

https://github.com/awslabs/amazon-redshift-monitoring

https://www.sumologic.com/blog/monitoring-amazon-redshift/

https://aws.amazon.com/redshift/

https://docs.aws.amazon.com/redshift/latest/dg/c_high_level_system_architecture.html

https://hevodata.com/blog/redshift-architecture/

https://towardsdatascience.com/amazon-redshift-architecture-
b674513eb996

https://www.intermix.io/blog/amazon-redshift-architecture/

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_cluster.html

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/clusters.html#:~:text=An%20Amazon%20ECS%20cluster%20is%20a%20logical%20grouping%20of%20tasks%20or%20services.&text=The%20infrastructure%20capacity%20can%20be,VM)%20that%20you%20manage%20remotely

https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-
guide/getting-started-nodejs.html

https://www.google.com/aclk?
sa=L&ai=DChcSEwjpmqXJjvDzAhVYhdUKHUilAmoYABAAGgJ3cw&ae=2&sig=AOD64_3hJpHKY9PA9W5iH5-
EUC-hraMTrQ&q&adurl&ved=2ahUKEwidoJvJjvDzAhXNif0HHVq-
DRkQ0Qx6BAgCEAE

https://docs.aws.amazon.com/lumberyard/latest/userguide/component-
slices-creating.html

https://aws.amazon.com/redshift/features/

https://sarasanalytics.com/blog/pros-and-cons-of-amazon-redshift

https://www.intermix.io/blog/amazon-redshift-use-cases/

https://www.trustradius.com/products/redshift/reviews?qs=product-
usage

https://searchaws.techtarget.com/definition/Amazon-Redshift-
Spectrum#:~:text=Amazon%20Redshift%20Spectrum%20is%20a,stored%20in%20Amazon%20S3%20buckets

https://blog.openbridge.com/how-is-aws-redshift-spectrum-different-
than-aws-athena-9baa2566034b

https://stackshare.io/stackups/aws-direct-connect-vs-aws-snowball-

https://github.com/awslabs/amazon-redshift-monitoring
https://www.sumologic.com/blog/monitoring-amazon-redshift/
https://aws.amazon.com/redshift/
https://docs.aws.amazon.com/redshift/latest/dg/c_high_level_system_architecture.html
https://hevodata.com/blog/redshift-architecture/
https://towardsdatascience.com/amazon-redshift-architecture-b674513eb996
https://www.intermix.io/blog/amazon-redshift-architecture/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_cluster.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/clusters.html
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/getting-started-nodejs.html
https://www.google.com/aclk?sa=L&ai=DChcSEwjpmqXJjvDzAhVYhdUKHUilAmoYABAAGgJ3cw&ae=2&sig=AOD64_3hJpHKY9PA9W5iH5-EUC-hraMTrQ&q&adurl&ved=2ahUKEwidoJvJjvDzAhXNif0HHVq-DRkQ0Qx6BAgCEAE
https://docs.aws.amazon.com/lumberyard/latest/userguide/component-slices-creating.html
https://aws.amazon.com/redshift/features/
https://sarasanalytics.com/blog/pros-and-cons-of-amazon-redshift
https://www.intermix.io/blog/amazon-redshift-use-cases/
https://www.trustradius.com/products/redshift/reviews?qs=product-usage
https://searchaws.techtarget.com/definition/Amazon-Redshift-Spectrum
https://blog.openbridge.com/how-is-aws-redshift-spectrum-different-than-aws-athena-9baa2566034b
https://stackshare.io/stackups/aws-direct-connect-vs-aws-snowball-edge

edge

https://www.slideshare.net/AmazonWebServices/data-migration-
using-aws-snowball-snowball-edge-snowmobile

https://aws.amazon.com/dms/

https://cloud.google.com/database-migration

https://www.stitchdata.com/resources/what-is-data-
pipeline/#:~:text=A%20data%20pipeline%20is%20a,that%20provide%20resiliency%20against%20failure

https://www.qlik.com/us/data-integration/data-pipeline

https://docs.aws.amazon.com/solutions/latest/constructs/aws-
cloudfront-apigateway-lambda.html

https://serverlessland.com/patterns/cloudfront-s3-lambda-cdk

https://aws.amazon.com/lambda/

https://www.redhat.com/en/topics/api/what-does-an-api-gateway-
do#:~:text=An%20API%20gateway%20is%20an,and%20return%20the%20appropriate%20result

https://aws.amazon.com/api-gateway/

https://www.amazonaws.cn/en/cloudfront/

https://en.wikipedia.org/wiki/Amazon_CloudFront

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/index.html

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/index.html

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html

https://www.slideshare.net/AmazonWebServices/data-migration-using-aws-snowball-snowball-edge-snowmobile
https://aws.amazon.com/dms/
https://cloud.google.com/database-migration
https://www.stitchdata.com/resources/what-is-data-pipeline/
https://www.qlik.com/us/data-integration/data-pipeline
https://docs.aws.amazon.com/solutions/latest/constructs/aws-cloudfront-apigateway-lambda.html
https://serverlessland.com/patterns/cloudfront-s3-lambda-cdk
https://aws.amazon.com/lambda/
https://www.redhat.com/en/topics/api/what-does-an-api-gateway-do
https://aws.amazon.com/api-gateway/
https://www.amazonaws.cn/en/cloudfront/
https://en.wikipedia.org/wiki/Amazon_CloudFront
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3api/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/s3/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html

ABOUT OUR PRODUCTS

Other products from IPSpecialist LTD regarding CSP technology are:

AWS Certified Cloud Practitioner Study guide

AWS Certified SysOps Admin - Associate Study guide

AWS Certified Solution Architect - Associate Study guide

AWS Certified Developer Associate Study guide

AWS Certified Advanced Networking – Specialty Study guide

AWS Certified Security – Specialty Study guide

AWS Certified Big Data – Specialty Study guide

AWS Certified Machine Learning – Specialty Study guide

Microsoft Certified: Azure Fundamentals

Microsoft Certified: Azure Administrator

Microsoft Certified: Azure Solution Architect

Microsoft Certified: Azure DevOps Engineer

Microsoft Certified: Azure Developer Associate

Microsoft Certified: Azure Security Engineer

Microsoft Certified: Azure Data Fundamentals

Microsoft Certified: Azure AI Fundamentals

Microsoft Certified: Azure Database Administrator Associate

Google Certified: Associate Cloud Engineer

Google Certified: Professional Cloud Developer

Microsoft Certified: Azure Data Engineer Associate

Microsoft Certified: Azure Data Scientist

Oracle Certified: OCI Foundations Associate

Oracle Certified: OCI Developer Associate

Oracle Certified: OCI Architect Associate

	Chapter 01: Introduction
	Course Introduction
	What is Data Analytics?

	Chapter 02: Amazon Simple Storage Service
	Introduction to S3
	Getting Data Into S3 - Concepts, AWS Management Console, AWS CLI
	Getting Data Into S3 - Boto3
	S3 Multipart Upload
	S3 Storage Classes
	S3 Lifecycle Policies
	S3 Security and Encryption
	Lab 2-01: Programmatically Utilizing Data from S3
	Mind Map
	Practice Questions

	Chapter 03: Databases in AWS
	Introduction
	Relational Database Service
	Neptune
	Serverless Options
	Lab 3-01: Programmatically Utilizing S3 Select

	Chapter 04: Collecting Streaming Data
	Introduction to Collecting Streaming Data
	Kinesis Family
	Kinesis Data Streams
	Lab 4-01: AWS Kinesis Data Stream
	Kinesis Data Firehose
	Kinesis Video Streams
	Kinesis Data Analytics
	Demo: Kinesis Data Analytics
	Amazon Managed Streaming for Kafka
	Lab 4-02: Joining, Enriching, & Transforming Streaming Data with Amazon Kinesis
	Mind Map
	Practice Questions

	Chapter 05: Data Collection and Getting Data into AWS
	Introduction
	Direct Connect, Snowball, Snowball Edge, Snowmobile
	Data Pipeline
	Lambda, API Gateway, and CloudFront
	Comparing our Options
	Mind Map
	Practice Questions

	Chapter 06: Amazon Elastic Map Reduce (EMR)
	Introduction
	Apache Hadoop and EMR Software Collection
	EMR Architecture
	EMR Operations - Transient vs. Long-Running
	EMR Operations - Choosing an Instance Type
	EMR Operations - Choosing the Right Number of Instances
	EMR Operations - On-Demand and Spot Instances
	EMR Operations - Monitoring and Resizing Clusters
	EMR File Storage and Compression
	Lab 6-01: Data Analytics with Spark and EMR
	Mind Map
	Practice Questions

	Chapter 07: Using Redshift
	Introduction
	Redshift Architecture
	Redshift in the AWS Service Ecosystem
	Redshift Use Cases
	Redshift Table Design
	Redshift Spectrum
	Lab 7-01: Querying Data from Multiple Redshift Spectrum Tables
	Mind Map
	Practice Questions

	Chapter 08: Redshift Maintenance and Operations
	Launching a Redshift Cluster
	Resizing a Redshift Cluster
	Utilizing Vacuum and Deep Copy
	Backup and Restore
	Monitoring
	Demo 8-02: Monitoring An Active Cluster
	Lab 8-01: Manually Migrating Data Between Redshift Clusters
	Mind Map
	Practice Questions

	Chapter 09: AWS Glue, Athena, and QuickSight
	Introduction
	Glue Data Catalog
	Demo 9-01: Populating the AWS Glue Data Catalog
	Glue Jobs
	Lab 9-01: AWS Glue Jobs
	Job Bookmarks
	Demo 9-01: How To Set Up Job Bookmarks
	Getting Started with Athena
	When To Use Athena
	QuickSight Visualizations and Dashboards
	QuickSight Security and Authentication
	Mind Map
	Practice Questions

	Chapter 10: Elasticsearch
	Introduction to Elasticsearch
	Using Elasticsearch
	Visualizing Elasticsearch Data
	Mind Map
	Practice Questions
	Key Management System
	Secrets Manager
	VPC Network Security Features
	Lab 11-01: Advanced S3 Security Configuration
	Mind Map

	Answers
	Chapter 02: Amazon Simple Storage Service
	Chapter 03: Databases in AWS
	Chapter 04: Collecting Streaming Data
	Chapter 05: Data Collection and Getting Data into AWS
	Chapter 06: Amazon Elastic Map Reduce
	Chapter 07: Using Redshift
	Chapter 08: Redshift Maintenance and Operations
	Chapter 09: AWS Glue, Athena, and QuickSight
	Chapter 10: ElasticSearch

	Acronyms
	References
	About Our Products

